• Laser & Optoelectronics Progress
  • Vol. 60, Issue 16, 1633001 (2023)
Meng Wu1,*, Yining Gao1, and Jia Wang2
Author Affiliations
  • 1School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • 2Shaanxi History Museum, Xi'an 710061, Shaanxi, China
  • show less
    DOI: 10.3788/LOP222583 Cite this Article Set citation alerts
    Meng Wu, Yining Gao, Jia Wang. Mural Style Transfer with Feature Clustering and Deep Residual Shrinkage Network[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1633001 Copy Citation Text show less
    References

    [1] Shen J N, Wang H Q, Wu M et al. Tang dynasty tomb murals inpainting algorithm of MCA decomposition[J]. Journal of Frontiers of Computer Science and Technology, 11, 1826-1836(2017).

    [2] Raitoharju J, Riabchenko E, Meissner K et al. Data enrichment in fine-grained classification of aquatic macroinvertebrates[C], 43-48(2016).

    [3] Xiao Q, Liu B, Li Z et al. Progressive data augmentation method for remote sensing ship image classification based on imaging simulation system and neural style transfer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 9176-9186(2021).

    [4] Zhang Y P, Wang Q, Hu B L. MinimalGAN: diverse medical image synthesis for data augmentation using minimal training data[J]. Applied Intelligence, 1-18(2022).

    [5] Gatys L A, Ecker A S, Bethge M. Image style transfer using convolutional neural networks[C], 2414-2423(2016).

    [6] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9906, 694-711(2016).

    [7] Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization[C], 1510-1519(2017).

    [8] Park D Y, Lee K H. Arbitrary style transfer with style-attentional networks[C], 5873-5881(2019).

    [9] Zhang Y L, Fang C, Wang Y L et al. Multimodal style transfer via graph cuts[C], 5942-5950(2019).

    [10] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556

    [11] Zhao M H, Zhong S S, Fu X Y et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 16, 4681-4690(2020).

    [12] He K M, Zhang X Y, Ren S Q et al. Identity mappings in deep residual networks[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9908, 630-645(2016).

    [13] Kingma D P, Ba J. Adam: a method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980

    [14] Lin T Y, Maire M, Belongie S et al. Microsoft COCO: common objects in context[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 8693, 740-755(2014).

    [15] Mahendran A, Vedaldi A. Understanding deep image representations by inverting them[C], 5188-5196(2015).

    [16] Zhou B L, Khosla A, Lapedriza A et al. Learning deep features for discriminative localization[C], 2921-2929(2016).

    [17] Salimans T, Goodfellow I, Zaremba W et al. Improved techniques for training GANs[C], 2234-2242(2016).

    [18] Che T, Li Y R, Jacob A P et al. Mode regularized generative adversarial networks[EB/OL]. https://arxiv.org/abs/1612.02136

    [19] Heusel M, Ramsauer H, Unterthiner T et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C], 6629-6640(2017).

    [20] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial networks[EB/OL]. https://arxiv.org/abs/1406.2661

    Meng Wu, Yining Gao, Jia Wang. Mural Style Transfer with Feature Clustering and Deep Residual Shrinkage Network[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1633001
    Download Citation