• Journal of Inorganic Materials
  • Vol. 37, Issue 7, 787 (2022)
Zhiqin WEN, Binrong HUANG, Taoyi LU, and Zhengguang ZOU
Author Affiliations
  • School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
  • show less
    DOI: 10.15541/jim20210612 Cite this Article
    Zhiqin WEN, Binrong HUANG, Taoyi LU, Zhengguang ZOU. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787 Copy Citation Text show less
    References

    [1] S ZHANG, F LI. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. Journal of Applied Physics(2012).

    [2] J HUANG, X W ZHANG, C ZHAO et al. Research status of modification of lead titanate series functional ceramics and application of modified ceramics. Materials for Mechanical Engineering, 94-98(2021).

    [3] S ZHANG, F LI, X JIANG et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-a review. Progress in Materials Science, 1-66(2015).

    [4] Y KUROIWA, S AOYAGI, A SAWADA et al. Structural study of perovskite-type fine particles by synchrotron radiation powder diffraction. Journal of Thermal Analysis and Calorimetry, 933-938(2002).

    [5] H WATTANASARN, T SEETAWAN. Elastic properties and Debye temperature of Zn doped PbTiO3 from first principles calculation. Integrated Ferroelectrics, 59-65(2014).

    [6] N PANDECH, K SARASAMAK, S LIMPIJUMNONG. Sound velocities and elastic properties of PbTiO3 and PbZrO3 under pressure: first principles study. Ceramics International(2013).

    [7] M YASEEN, H AMBREEN, R MEHMOOD et al. Investigation of optical and thermoelectric properties of PbTiO3 under pressure. Physica B: Condensed Matter(2021).

    [8] Z REN, G XU, Y LIU et al. PbTiO3 nanofibers with edge-shared TiO6 octahedra. Journal of the American Chemical Society, 5572-5573(2010).

    [9] Y LIU, L H NI, Z H REN et al. First-principles study of structural stability and elastic property of pre-perovskite PbTiO3. Chinese Physics B, 352-356(2012).

    [10] M J ZHOU, Y WANG, Y JI et al. First-principles lattice dynamics and thermodynamic properties of pre-perovskite PbTiO3. Acta Materialia, 146-153(2019).

    [11] J P PERDEW, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Physical Review Letters, 3865-3868(1996).

    [12] J P PERDEW, A RUZSINSZKY, G I CSONKA et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters(2008).

    [13] Y LIU, L H NI, G XU et al. Phase transition in PbTiO3 under pressure studied by the first-principles method. Physica B-Condensed Matter, 3863-3866(2008).

    [14] M D SEGALL, P J D LINDAN, M J PROBERT et al. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2717-2744(2002).

    [15] J P PERDEW. Density-functional approximation for the correlation energy of the inhomogeneous electron gas.. Physical Review B, 8822-8824(1986).

    [16] K LAASONEN, A PASQUARELLO, R CAR et al. Carparrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Physical Review B, 10142-10153(1993).

    [17] T H FISCHER, J ALMLOF. General methods for geometry and wave function optimization. The Journal of Physical Chemistry, 9768-9774(1992).

    [18] J LONG, L YANG, X WEI. Lattice, elastic properties and Debye temperatures of ATiO3 (A=Ba, Ca, Pb, Sr) from first-principles. Journal of Alloys and Compounds, 336-340(2013).

    [19] Y ZHANG, J SUN, J P PERDEW et al. Comparative first- principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA. Physical Review B(2017).

    [20] R J NELMES, W F KUHS. The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K.. Solid State Communications, 721-723(1985).

    [21] Z ALAHMED, H X FU. First-principles determination of chemical potentials and vacancy formation energies in PbTiO3 and BaTiO3. Physical Review B(2007).

    [22] P J NIU, J L YAN, C Y XU. First-principles study of nitrogen doping and oxygen vacancy in cubic PbTiO3. Computational Materials Science, 10-14(2015).

    [23] Z WEN, Y ZHAO, J LI et al. Phase stability and thermo-physical properties of nickel-aluminum binary chemically disordered systems via first-principles study. Metals and Materials International, 1469-1477(2021).

    [24] Z Y JIAO, J F YANG, X Z ZHANG et al. Theoretical investigation of elastic, electronic, and optical properties of zinc-blende structure GaN under high pressure. Acta Physica Sinica, 534-541(2011).

    [25] S M HOSSEINI, T MOVLAROOY, A KOMPANY. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3. Physica B: Condensed Matter, 316-321(2007).

    [26] Y J SHI, Y L DU, G CHEN et al. First principle study on phase stability and electronic structure of YCu.. Physics Letters A, 495-498(2007).

    [27] Q M HU, R YANG, D S XU et al. Energetics and electronic structure of grain boundaries and surfaces of B- and H-doped Ni3Al. Physical Review B(2003).

    [28] F GUO, X ZHOU, G LI et al. Structural, mechanical, electronic and thermodynamic properties of cubic TiC compounds under different pressures: a first-principles study. Solid State Communications(2020).

    [29] V I ZAMETIN. Absorption edge anomalies in polar semiconductors and dielectrics at phase transitions. Physica Status Solidi (B), 625-640(1984).

    [30] E R LEITE, L P S SANTOS, N L V CARRENO et al. Photoluminescence of nanostructured PbTiO3 processed by high- energy mechanical milling. Applied Physics Letters, 2148-2150(2001).

    [31] Z REN, G JING, Y LIU et al. Pre-perovskite nanofiber: a new direct-band gap semiconductor with green and near infrared photoluminescence. RSC Advances, 5453-5458(2013).

    [32] A C M YANG. Measurements of equi-biaxial stress in adhered polyimide films by tilted beam polarized light microscopy. Materials Chemistry and Physics, 150-153(1995).

    [33] S DAI, W LIU. First-principles study on the structural, mechanical and electronic properties of δ and γ phases in Inconel 718. Computational Materials Science, 414-418(2010).

    [34] A G KALINICHEV, J D BASS, B N SUN et al. Elastic properties of tetragonal PbTiO3 single crystals by brillouin scattering. Journal of Materials Research, 2623-2627(1997).

    [35] Z LI, M GRIMSDITCH, C M FOSTER et al. Dielectric and elastic properties of ferroelectric materials at elevated temperature. Journal of Physics and Chemistry of Solids, 1433-1438(1996).

    [36] R HILL. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 349-354(1952).

    [37] W VOIGT. Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper. Annalen der Physik, 573-587(1889).

    [38] H J WANG, X P SU, S P SUN et al. First-principles calculations to investigate the anisotropic elasticity and thermodynamic properties of FeAl3 under pressure effect. Results in Physics(2021).

    [39] R ZHANG, P GAO, X WANG et al. Pressure and temperature dependence of structural and elastic properties of FeSe superconductor by first-principles calculation. Cryogenics, 28-34(2019).

    [40] J H PENG, E TIKHONOV. Vacancy on structures, mechanical properties and electronic properties of ternary Hf-Ta-C system: a first-principles study. Journal of Inorganic Materials, 51-57(2022).

    [41] S I RANGANATHAN, M OSTOJA-STARZEWSKI. Universal elastic anisotropy index. Physical Review Letters(2008).

    [42] M A BLANCO, E FRANCISCO, V LUAÑA. Gibbs: isothermal- isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 57-72(2004).

    [43] A OTERO-DE-LA-ROZA, D ABBASI-PÉREZ, V LUAÑA. Gibbs 2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Computer Physics Communications, 2232-2248(2011).

    Zhiqin WEN, Binrong HUANG, Taoyi LU, Zhengguang ZOU. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787
    Download Citation