• Laser & Optoelectronics Progress
  • Vol. 60, Issue 10, 1028010 (2023)
Qiang Li, Xiyuan Wang*, and Jiawei He
Author Affiliations
  • College of Physics and Electronic Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
  • show less
    DOI: 10.3788/LOP213046 Cite this Article Set citation alerts
    Qiang Li, Xiyuan Wang, Jiawei He. Improved Algorithm for Super-Resolution Reconstruction of Remote-Sensing Images Based on Generative Adversarial Networks[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028010 Copy Citation Text show less
    Improved SR reconstruction network. (a) Structure of generating network; (b) structure of adversarial network
    Fig. 1. Improved SR reconstruction network. (a) Structure of generating network; (b) structure of adversarial network
    Structure of RRDB
    Fig. 2. Structure of RRDB
    Structure of RRFDB
    Fig. 3. Structure of RRFDB
    Structure of RFB
    Fig. 4. Structure of RFB
    PSNR values of different convolution combinations
    Fig. 5. PSNR values of different convolution combinations
    Image reconstruction of different algorithms on Kaggle test dataset. (a) HR; (b) Bicubic; (c) SRGAN; (d) EDSR; (e) ESRGAN; (f) proposed algorithm
    Fig. 6. Image reconstruction of different algorithms on Kaggle test dataset. (a) HR; (b) Bicubic; (c) SRGAN; (d) EDSR; (e) ESRGAN; (f) proposed algorithm
    Image reconstruction of different algorithms on WHU-RS19 dataset. (a) HR; (b) Bicubic; (c) SRGAN; (d) EDSR; (e) ESRGAN; (f) proposed algorithm
    Fig. 7. Image reconstruction of different algorithms on WHU-RS19 dataset. (a) HR; (b) Bicubic; (c) SRGAN; (d) EDSR; (e) ESRGAN; (f) proposed algorithm
    Image reconstruction of different algorithms on AID dataset. (a) HR; (b) Bicubic; (c) SRGAN; (d) EDSR; (e) ESRGAN; (f) proposed algorithm
    Fig. 8. Image reconstruction of different algorithms on AID dataset. (a) HR; (b) Bicubic; (c) SRGAN; (d) EDSR; (e) ESRGAN; (f) proposed algorithm
    ModulePSNR /dBSSIMFSIM
    GAN+RFDB(16)29.830.8620.975
    GAN+RRDB(16)30.490.8840.990
    GAN+RRDB(16)+RFDB(4)30.920.8920.992
    GAN+RRDB(16)+RFDB(6)31.670.8970.993
    GAN+RRDB(16)+RFDB(8)31.680.8950.993
    Table 1. Performance of algorithm on Kaggle test dataset under different module settings
    ModulePSNR /dBSSIMFSIM
    SRGAN original loss29.710.8440.930
    Lcont30.630.8740.931
    Lcont+Lpercep31.210.8830.931
    Lcont+Lpercep+Ladv31.420.8860.964
    Lcont+Lpercep+Ladv+LTV31.670.8970.993
    Table 2. Performance of algorithm on Kaggle test datasets with different loss function settings
    DatasetScaleBicubicEDSRSRGANESRGANProposed algorithm
    Kaggle229.0137.5136.9137.7637.99
    326.0333.3132.5533.7634.10
    424.3430.7130.1631.2331.67
    WHU-RS19225.5927.8627.1528.7529.06
    324.5526.8325.8427.8028.08
    422.9624.7423.9425.7126.08
    AID225.4329.1828.3729.4429.55
    322.8225.9125.0226.3326.52
    421.3423.8923.1824.3524.63
    Table 3. Average PSNR of different algorithms on Kaggle, WHU-RS19, and AID
    DatasetScaleBicubicEDSRSRGANESRGANProposed algorithm
    Kaggle20.8560.9700.9600.9620.972
    30.7940.9270.9060.9180.935
    40.7370.8740.8480.8810.897
    WHU-RS1920.8000.9420.8440.8340.854
    30.7420.9000.7970.7960.822
    40.6890.8480.7460.7640.788
    AID20.7120.9780.8020.7900.798
    30.6600.9350.7570.7540.767
    40.6130.8810.7080.7240.736
    Table 4. Average SSIM of different algorithms on Kaggle, WHU-RS19, and AID
    DatasetScaleBicubicEDSRSRGANESRGANProposed algorithm
    Kaggle20.8610.9930.9940.9980.999
    30.8500.9900.9900.9930.997
    40.8340.9830.9810.9860.993
    WHU-RS1920.8320.9100.9100.9140.915
    30.8220.9070.9060.9090.912
    40.8060.9010.8980.9030.908
    AID20.8240.9030.9040.9080.906
    30.8140.9000.9000.9030.903
    40.7980.8940.8920.8970.899
    Table 5. Average FSIM of different algorithms on Kaggle, WHU-RS19, and AID
    AlgorithmKaggleWHU-RS19AID
    Bicubic128.60740.32258.169
    EDSR224.03681.723119.134
    SRGAN283.54789.812128.725
    ESRGAN271.07784.853121.321
    Proposed algorithm280.32487.465125.364
    Table 6. Running time of different algorithms on Kaggle, WHU-RS19, and AID
    Qiang Li, Xiyuan Wang, Jiawei He. Improved Algorithm for Super-Resolution Reconstruction of Remote-Sensing Images Based on Generative Adversarial Networks[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028010
    Download Citation