• Laser & Optoelectronics Progress
  • Vol. 60, Issue 10, 1028010 (2023)
Qiang Li, Xiyuan Wang*, and Jiawei He
Author Affiliations
  • College of Physics and Electronic Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
  • show less
    DOI: 10.3788/LOP213046 Cite this Article Set citation alerts
    Qiang Li, Xiyuan Wang, Jiawei He. Improved Algorithm for Super-Resolution Reconstruction of Remote-Sensing Images Based on Generative Adversarial Networks[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028010 Copy Citation Text show less
    References

    [1] Ji C D, Kang Z L. Extraction method of urban area from GF-6 satellite[J]. Laser & Optoelectronics Progress, 58, 0428003(2021).

    [2] Li J Y, Li X R, Zhao L Y. Ship target detection in optical remote sensing images based on spatial and frequency features[J]. Laser & Optoelectronics Progress, 58, 0415005(2021).

    [3] Zhu S X, Zhou Z J, Gu X J et al. Scene classification of remote sensing images based on RCF network[J]. Laser & Optoelectronics Progress, 58, 1401001(2021).

    [4] Guo D E, Xia Y, Xu L M et al. Remote sensing image super-resolution using cascade generative adversarial nets[J]. Neurocomputing, 443, 117-130(2021).

    [5] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [6] Dong C, Loy C C, Tang X O. Accelerating the super-resolution convolutional neural network[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9906, 391-407(2016).

    [7] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C], 1646-1654(2016).

    [8] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 105-114(2017).

    [9] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial networks[J]. Communications of the ACM, 63, 139-144(2020).

    [10] Wang X T, Yu K, Wu S X et al. ESRGAN: enhanced super-resolution generative adversarial networks[M]. Leal-Taixé L, Roth S. Computer vision-ECCV 2018 workshops. Lecture notes in computer science, 11133, 63-79(2019).

    [11] Liu S T, Huang D, Wang Y H. Receptive field block net for accurate and fast object detection[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11215, 404-419(2018).

    [12] Zhang S, Yuan Q Q, Li J et al. Scene-adaptive remote sensing image super-resolution using a multi-scale attention network[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 4764-4779(2020).

    [13] Dong X Y, Sun X, Jia X P et al. Remote sensing image super-resolution using novel dense-sampling networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 1618-1633(2021).

    [14] Dong X Y, Wang L G, Sun X et al. Remote sensing image super-resolution using second-order multi-scale networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 3473-3485(2021).

    [15] Jiang K, Wang Z Y, Yi P et al. Edge-enhanced GAN for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 5799-5812(2019).

    [16] Lei S, Shi Z W, Zou Z X. Coupled adversarial training for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 3633-3643(2020).

    [17] Huang G, Liu Z, van der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2016).

    [18] Lai W S, Huang J B, Ahuja N et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C], 5835-5843(2017).

    [19] Chen M, Pu Y F, Bai Y C. Low-dose CT image denoising using residual convolutional network with fractional TV loss[J]. Neurocomputing, 452, 510-520(2021).

    [20] Zhou C, Gu Z H, Gao Y et al. An improved style transfer algorithm using feedforward neural network for real-time image conversion[J]. Sustainability, 11, 5673(2019).

    [21] Zhang N, Wang Y C, Zhang X et al. An unsupervised remote sensing single-image super-resolution method based on generative adversarial network[J]. IEEE Access, 8, 29027-29039(2020).

    [22] Dai D X, Yang W. Satellite image classification via two-layer sparse coding with biased image representation[J]. IEEE Geoscience and Remote Sensing Letters, 8, 173-176(2011).

    [23] Xia G S, Hu J W, Hu F et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 3965-3981(2017).

    [24] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [25] Zhang L, Zhang L, Mou X Q et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 20, 2378-2386(2011).

    Qiang Li, Xiyuan Wang, Jiawei He. Improved Algorithm for Super-Resolution Reconstruction of Remote-Sensing Images Based on Generative Adversarial Networks[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028010
    Download Citation