• Infrared and Laser Engineering
  • Vol. 51, Issue 7, 20210744 (2022)
Ying Yang1,2,3, Lanqiang Zhang1,2,3, and Changhui Rao1,2,3,*
Author Affiliations
  • 1The Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/IRLA20210744 Cite this Article
    Ying Yang, Lanqiang Zhang, Changhui Rao. Analysis of performance evaluation methods of wide-field ground-layer adaptive optics[J]. Infrared and Laser Engineering, 2022, 51(7): 20210744 Copy Citation Text show less
    References

    [1] Wenhan Jiang. Overview of adaptive optics development. Opto-Electronic Engineering, 45, 7-21(2018).

    [2] Ulrich M H. ESO conference on very large telescopes their instrumentation [C]ESO Conference Wkshop Proceedings, 1988, 1 & 2: 30.

    [3] Beckers J M. Detailed compensation of atmospheric seeing using multiconjugate adaptive optics[C]Active Telescope Systems. International Society f Optics Photonics, 1989, 1114: 215219.

    [4] Rigaut F. Ground conjugate wide field adaptive optics f the ELTs [C]European Southern Observaty Conference Wkshop Proceedings, 2002, 58: 11.

    [5] Hardy J W. Adaptive Optics f Astronomical Telescopes[M]. New Yk: Oxfd University Press, 1998.

    [6] B L Ellerbroek. First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes. JOSA A, 11, 783-805(1994).

    [7] A Tokovinin. Seeing improvement with ground‐layer adaptive optics. Publications of the Astronomical Society of the Pacific, 116, 941-351(2004).

    [8] Jingyuan Chen, Youkuan Li. First-order theoretical model for laser guide star adaptive optics system. High Power Laser and Particle Beams, 21, 649-657(2009).

    [9] D R Andersen, J Stoesz, S Morris, et al. Performance modeling of a wide‐field ground‐layer adaptive optics system. Publications of the Astronomical Society of the Pacific, 118, 1574(2006).

    [10] C M Correia, C Z Bond, J F Sauvage, et al. Modeling astronomical adaptive optics performance with temporally filtered Wiener reconstruction of slope data. JOSA A, 34, 1877-1887(2017).

    [11] Qi Ge, Kedong Wang, Hong Zhang, . Estimation of point spread function for long-exposure atmospheric turbulence-degraded images. Infrared and Laser Engineering, 43, 1327-1331(2014).

    [12] J P Véran, F Rigaut, H Maıtre, et al. Estimation of the adaptive optics long-exposure point-spread function using control loop data. JOSA A, 14, 3057-3069(1997).

    [13] M R Whiteley, M C Roggemann, B M Welsh. Temporal properties of the Zernike expansion coefficients of turbulence-induced phase aberrations for aperture and source motion. JOSA A, 15, 993-1005(1998).

    [14] Jun Li, Haiqing Chen, Wenxin Ren, . Simulation of the optical parts in an adaptive optics system. Journal of Optoelectronics · Laser, 17, 669-672(2006).

    [15] Dun Li, Yu Ning, Wuming Wu, . Numerical simulation and validation method of atmospheric turbulence of phase screen in rotation. Infrared and Laser Engineering, 46, 1211003(2017).

    [16] Ellerbroek B L, Rigaut F J. Scaling multiconjugate adaptive optics perfmance estimates to extremely large telescopes[C]Adaptive Optical Systems Technology. International Society f Optics Photonics, 2000, 4007: 10881099.

    [17] Zhengfang Song, Gaochao Yang, Xiaochun Liu, . Measurements of atmospheric seeing in Yunnan Observatory. Chinese J Quantum Electron, 14, 68-74(1997).

    Ying Yang, Lanqiang Zhang, Changhui Rao. Analysis of performance evaluation methods of wide-field ground-layer adaptive optics[J]. Infrared and Laser Engineering, 2022, 51(7): 20210744
    Download Citation