• Nano-Micro Letters
  • Vol. 16, Issue 1, 185 (2024)
Xiangkai Kong1,2,*, Jie Xu2,4, Zhicheng Ju1,**, and Changle Chen3,***
Author Affiliations
  • 1School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116 Jiangsu, People’s Republic of China
  • 2Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, 235000 Anhui, People’s Republic of China
  • 3School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 Anhui, People’s Republic of China
  • 4School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 Jiangsu, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01384-7 Cite this Article
    Xiangkai Kong, Jie Xu, Zhicheng Ju, Changle Chen. Durable Ru Nanocrystal with HfO2 Modification for Acidic Overall Water Splitting[J]. Nano-Micro Letters, 2024, 16(1): 185 Copy Citation Text show less
    References

    [1] J. Yang, A.R. Mohmad, Y. Wang, R. Fullon, X. Song et al., Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019).

    [2] S. Liu, J. Liu, X. Liu, J. Shang, L. Xu et al., Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 16, 331–336 (2021).

    [3] D. Yan, C. Mebrahtu, S. Wang, R. Palkovits, Innovative electrochemical strategies for hydrogen production: from electricity input to electricity output. Angew. Chem. Int. Ed. 62, e202214333 (2023).

    [4] Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 (2023).

    [5] H. Song, M. Wu, Z. Tang, J.S. Tse, B. Yang et al., Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem. Int. Ed. 60, 7234–7244 (2021).

    [6] K. Yu, H. Yang, H. Zhang, H. Huang, Z. Wang et al., Immobilization of oxyanions on the reconstructed heterostructure evolved from a bimetallic oxysulfide for the promotion of oxygen evolution reaction. Nano-Micro Lett. 15, 186 (2023).

    [7] D. Yan, C. Xia, W. Zhang, Q. Hu, C. He et al., Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 12, 2202317 (2022).

    [8] C. Li, S.H. Kim, H.Y. Lim, Q. Sun, Y. Jiang et al., Self-accommodation induced electronic metal-support interaction on ruthenium site for alkaline hydrogen evolution reaction. Adv. Mater. 35, e2301369 (2023).

    [9] J. Xu, Y. Feng, P. Wu, S. Tian, Z. Fang et al., Embedded ruthenium nanoparticles within exfoliated nanosheets of Ti3C2Tx for hydrogen evolution. ACS Appl. Nano Mater. 5, 14241–14245 (2022).

    [10] B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023).

    [11] X. Kong, C. Zhang, S.Y. Hwang, Q. Chen, Z. Peng, Free-standing holey Ni(OH)2 nanosheets with enhanced activity for water oxidation. Small 13, 1700334 (2017).

    [12] H.N. Nong, T. Reier, H.-S. Oh, M. Gliech, P. Paciok et al., A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 1, 841–851 (2018).

    [13] T. Reier, H.N. Nong, D. Teschner, R. Schlögl, P. Strasser, Electrocatalytic oxygen evolution reaction in acidic environments–reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2017).

    [14] Y. Li, T. Xu, Q. Huang, L. Zhu, Y. Yan et al., C60 fullerenol to stabilize and activate Ru nanoparticles for highly efficient hydrogen evolution reaction in alkaline media. ACS Catal. 13, 7597–7605 (2023).

    [15] H. Shi, H. Liang, F. Ming, Z. Wang, Efficient overall water-splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres. Angew. Chem. Int. Ed. 56, 573–577 (2017).

    [16] Q. Liang, Q. Li, L. Xie, H. Zeng, S. Zhou et al., Superassembly of surface-enriched Ru nanoclusters from trapping-bonding strategy for efficient hydrogen evolution. ACS Nano 16, 7993–8004 (2022).

    [17] L. Zhang, N. Jin, Y. Yang, X.-Y. Miao, H. Wang et al., Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nano-Micro Lett. 15, 228 (2023).

    [18] C.-F. Li, T.-Y. Shuai, L.-R. Zheng, H.-B. Tang, J.-W. Zhao et al., The key role of carboxylate ligands in Ru@Ni-MOFs/NF in promoting water dissociation kinetics for effective hydrogen evolution in alkaline media. Chem. Eng. J. 451, 138618 (2023).

    [19] P. Bhanja, Y. Kim, B. Paul, Y.V. Kaneti, A.A. Alothman et al., Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: efficient electrocatalysts for oxygen evolution reaction. Chem. Eng. J. 405, 126803 (2021).

    [20] N.L.W. Septiani, Y.V. Kaneti, Y. Guo, B. Yuliarto, X. Jiang et al., Holey assembly of two-dimensional iron-doped nickel-cobalt layered double hydroxide nanosheets for energy conversion application. ChemSusChem 13, 1645–1655 (2020).

    [21] Y. Guo, C. Zhang, J. Zhang, K. Dastafkan, K. Wang et al., Metal–organic framework-derived bimetallic NiFe selenide electrocatalysts with multiple phases for efficient oxygen evolution reaction. ACS Sustain. Chem. Eng. 9, 2047–2056 (2021).

    [22] X. Gu, M. Yu, S. Chen, X. Mu, Z. Xu et al., Coordination environment of Ru clusters with in situ generated metastable symmetry-breaking centers for seawater electrolysis. Nano Energy 102, 107656 (2022).

    [23] N. Han, W. Zhang, W. Guo, H. Pan, B. Jiang et al., Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano-Micro Lett. 15, 185 (2023).

    [24] D. Wu, D. Chen, J. Zhu, S. Mu, Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 17, e2102777 (2021).

    [25] G. Li, H. Jang, S. Liu, Z. Li, M.G. Kim et al., The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution. Nat. Commun. 13, 1270 (2022).

    [26] J. Xu, S. Wang, C. Yang, T. Li, Q. Liu et al., Free-standing two-dimensional ruthenium-beryllium nanosheets for alkaline hydrogen evolution. Chem. Eng. J. 421, 129741 (2021).

    [27] S. Li, D. Liu, G. Wang, P. Ma, X. Wang et al., Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nano-Micro Lett. 15, 189 (2023).

    [28] F. Bao, Z. Yang, Y. Yuan, P. Yu, G. Zeng et al., Synergistic cascade hydrogen evolution boosting via integrating surface oxophilicity modification with carbon layer confinement. Adv. Funct. Mater. 32, 2108991 (2022).

    [29] S. Hao, M. Liu, J. Pan, X. Liu, X. Tan et al., Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity. Nat. Commun. 11, 5368 (2020).

    [30] A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.-L. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    [31] P. Gayen, S. Saha, K. Bhattacharyya, V.K. Ramani, Oxidation state and oxygen-vacancy-induced work function controls bifunctional oxygen electrocatalytic activity. ACS Catal. 10, 7734–7746 (2020).

    [32] C. Roy, R.R. Rao, K.A. Stoerzinger, J. Hwang, J. Rossmeisl et al., Trends in activity and dissolution on RuO2 under oxygen evolution conditions: particles versus well-defined extended surfaces. ACS Energy Lett. 3, 2045–2051 (2018).

    [33] S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao et al., Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 10, 1152–1160 (2020).

    [34] J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao et al., Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater., e1801351 (2018).

    [35] X. Cui, P. Ren, C. Ma, J. Zhao, R. Chen et al., Robust interface Ru centers for high-performance acidic oxygen evolution. Adv. Mater. 32, e1908126 (2020).

    [36] J. Wang, H. Yang, F. Li, L. Li, J. Wu et al., Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 8, eabl9271 (2022).

    [37] M.A. Hubert, A.M. Patel, A. Gallo, Y. Liu, E. Valle et al., Acidic oxygen evolution reaction activity–stability relationships in Ru-based pyrochlores. ACS Catal. 10, 12182–12196 (2020).

    [38] D. Zhang, M. Li, X. Yong, H. Song, G.I.N. Waterhouse et al., Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media. Nat. Commun. 14, 2517 (2023).

    [39] A.M. Harzandi, S. Shadman, A.S. Nissimagoudar, D.Y. Kim, H.-D. Lim et al., Ruthenium core–shell engineering with nickel single atoms for selective oxygen evolution via nondestructive mechanism. Adv. Energy Mater. 11, 2003448 (2021).

    [40] Y. Zhang, G.-Q. Mao, X. Zhao, Y. Li, M. Zhang et al., Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12, 7232 (2021).

    [41] D. Huang, K. Wang, L. Yu, T.H. Nguyen, S. Ikeda et al., Over 1% efficient unbiased stable solar water splitting based on a sprayed Cu2ZnSnS4 photocathode protected by a HfO2 photocorrosion-resistant film. ACS Energy Lett. 3, 1875–1881 (2018).

    [42] W. Banerjee, A. Kashir, S. Kamba, Hafnium oxide (HfO2) - A multifunctional oxide: a review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories. Small 18, e2107575 (2022).

    [43] Y. Wang, Q. Lu, F. Li, D. Guan, Y. Bu, Atomic-scale configuration enables fast hydrogen migration for electrocatalysis of acidic hydrogen evolution. Adv. Funct. Mater. 33, 2213523 (2023).

    [44] J. Xu, C. Chen, X. Kong, Ru-O-Cu center constructed by catalytic growth of Ru for efficient hydrogen evolution. Nano Energy 111, 108403 (2023).

    [45] J. Xu, X. Kong, Amorphous/crystalline heterophase ruthenium nanosheets for pH-universal hydrogen evolution. Small Methods 6, e2101432 (2022).

    [46] P. Wu, X. Kong, Y. Feng, W. Ding, Z. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater., 34, 2311983 (2024).

    [47] G. Wu, X. Zheng, P. Cui, H. Jiang, X. Wang et al., A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 10, 4855 (2019).

    [48] G. Yan, Y. Wang, Z. Zhang, Y. Dong, J. Wang et al., Nanoparticle-decorated ultrathin La2O3 nanosheets as an efficient electrocatalysis for oxygen evolution reactions. Nano-Micro Lett. 12, 49 (2020).

    [49] M. Su, J. Shi, Q. Kang, D. Lai, Q. Lu et al., One-step multiple structure modulations on sodium vanadyl phosphate@carbon towards ultra-stable high rate sodium storage. Chem. Eng. J. 432, 134289 (2022).

    [50] A. Pei, G. Li, L. Zhu, Z. Huang, J. Ye et al., Nickel hydroxide-supported Ru single atoms and Pd nanoclusters for enhanced electrocatalytic hydrogen evolution and ethanol oxidation. Adv. Funct. Mater. 32, 2208587 (2022).

    [51] L. Cao, Q. Luo, J. Chen, L. Wang, Y. Lin et al., Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 10, 4849 (2019).

    [52] D. Majumdar, T. Maiyalagan, Z. Jiang, Recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem 6, 4343–4372 (2019).

    [53] Y. Hu, C. Hu, A. Du, T. Xiao, L. Yu et al., Interfacial evolution on co-based oxygen evolution reaction electrocatalysts probed by using in situ surface-enhanced Raman spectroscopy. Anal. Chem. 95, 1703–1709 (2023).

    [54] J.C. Dong, M. Su, V. Briega-Martos, L. Li, J.B. Le et al., Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 142, 715–719 (2020).

    Xiangkai Kong, Jie Xu, Zhicheng Ju, Changle Chen. Durable Ru Nanocrystal with HfO2 Modification for Acidic Overall Water Splitting[J]. Nano-Micro Letters, 2024, 16(1): 185
    Download Citation