Author Affiliations
1Chongqing University of Posts and Telecommunications, School of Communication and Information Engineering, Chongqing, 400065, China2Engineering Research Center of Mobile Communications of the Ministry of Education, Chongqing, 400065, China3Chongqing Key Laboratory of Mobile Communications Technology, Chongqing, 400065, Chinashow less
Fig. 1. Comparison of different loss functions
Fig. 2. Spectra of five ground objects in simulated data set
Fig. 3. Average SAD and RMSE on Jasper Ridge data set for different and
Fig. 4. Comparison of SSCNMF algorithm for extracting endmembers on Jasper Ridge data set with real endmembers
Fig. 5. Comparison of abundance maps on Jasper Ridge data set with real abundance maps by different algorithms
Fig. 6. Comparison of SSCNMF algorithm for extracting endmembers on Urban data set with real endmembers
Fig. 7. Comparison of abundance maps on Urban data set with real abundance maps by different algorithms
Input:hyperspectral image matrix ,parameters ,,and ; Initialization:initialize end element matrix and abundance matrix using VCA-FCLS; Step1:calculate error matrix ; Step2:calculate auxiliary matrix ; Step3:calculate; Step4:calculate ; |
---|
Step5: cancel outliers to ; Step6:applying ASC constraints ,,; Step7:update abundance matrix according to Eq.(20); | Step8:update error matrix; Step9:update auxiliary matrix ; Step10:update element matrix according to Eq.(22); | Repeat above steps until stop condition is met; Output:element matrix and abundance matrix . |
|
Table 1. SSCNMF algorithm process
SNR /dB | MVCNMF | L1/2-NMF | Cauchy NMF | SSRNMF | SSWNMF | SSCNMF |
---|
10 | 0.2573 | 0.2674 | 0.2466 | 0.2213 | 0.2160 | 0.2042 | 15 | 0.2041 | 0.1901 | 0.1843 | 0.1594 | 0.1565 | 0.1505 | 20 | 0.1655 | 0.1518 | 0.1511 | 0.0913 | 0.0944 | 0.0889 | 25 | 0.1098 | 0.0942 | 0.1035 | 0.0811 | 0.0735 | 0.0679 | 30 | 0.0917 | 0.0886 | 0.0872 | 0.0641 | 0.0537 | 0.0503 |
|
Table 2. SAD values after adding different levels of Gaussian white noise to each algorithm
SNR /dB | MVCNMF | L1/2-NMF | Cauchy NMF | SSRNMF | SSWNMF | SSCNMF |
---|
10 | 0.4274 | 0.4118 | 0.4208 | 0.3473 | 0.3358 | 0.3069 | 15 | 0.3781 | 0.3710 | 0.3543 | 0.2873 | 0.2569 | 0.2381 | 20 | 0.2718 | 0.2556 | 0.2371 | 0.1519 | 0.1501 | 0.1477 | 25 | 0.1405 | 0.1289 | 0.1421 | 0.1088 | 0.0912 | 0.0784 | 30 | 0.1175 | 0.1052 | 0.1056 | 0.0733 | 0.0698 | 0.0595 |
|
Table 3. RMSE values after adding different levels of Gaussian white noise to each algorithm
D | MVCNMF | L1/2-NMF | Cauchy NMF | SSRNMF | SSWNMF | SSCNMF |
---|
0.1 | 0.1565 | 0.1497 | 0.0831 | 0.0990 | 0.1074 | 0.0579 | 0.2 | 0.1996 | 0.1755 | 0.1463 | 0.1529 | 0.1406 | 0.0892 | 0.3 | 0.2136 | 0.2438 | 0.1986 | 0.1820 | 0.1885 | 0.1002 | 0.4 | 0.3853 | 0.3313 | 0.2965 | 0.2999 | 0.2734 | 0.1282 |
|
Table 4. SAD values after adding salt and pepper noise of different densities to each algorithm
D | MVCNMF | L1/2-NMF | Cauchy NMF | SSRNMF | SSWNMF | SSCNMF |
---|
0.1 | 0.1281 | 0.1209 | 0.1093 | 0.0891 | 0.0857 | 0.0567 | 0.2 | 0.1687 | 0.1524 | 0.1678 | 0.1356 | 0.1426 | 0.0722 | 0.3 | 0.2349 | 0.2388 | 0.2116 | 0.1982 | 0.2031 | 0.1274 | 0.4 | 0.2968 | 0.2784 | 0.2849 | 0.2523 | 0.2382 | 0.1519 |
|
Table 5. RMSE values after adding salt and pepper noise of different densities to each algorithm
Category | MVCNMF | L1/2-NMF | Cauchy NMF | SSRNMF | SSWNMF | SSCNMF |
---|
Tree | 0.1474 | 0.1316 | 0.0913 | 0.1270 | 0.1112 | 0.1078 | Water | 0.1168 | 0.1239 | 0.1279 | 0.0792 | 0.0875 | 0.0558 | Soil | 0.0889 | 0.1179 | 0.1028 | 0.1457 | 0.0845 | 0.1203 | Road | 0.1358 | 0.1146 | 0.1256 | 0.1231 | 0.0981 | 0.0886 | Mean | 0.1224 | 0.1220 | 0.1119 | 0.1187 | 0.0953 | 0.0931 |
|
Table 6. SAD values of different algorithms on Jasper Ridge data set
Category | MVCNMF | L1/2-NMF | Cauchy NMF | SSRNMF | SSWNMF | SSCNMF |
---|
Mean | 0.2223 | 0.2011 | 0.2022 | 0.1871 | 0.1431 | 0.1367 |
|
Table 7. RMSE values of different algorithms on Jasper Ridge data set
Category | MVCNMF | L1/2-NMF | Cauchy NMF | SSRNMF | SSWNMF | SSCNMF |
---|
Asphalt | 0.2445 | 0.3580 | 0.2267 | 0.2772 | 0.2310 | 0.1806 | Glass | 0.3683 | 0.3324 | 0.2863 | 0.2118 | 0.2027 | 0.2015 | Tree | 0.2874 | 0.1935 | 0.3473 | 0.1347 | 0.1965 | 0.2204 | Roof | 0.1904 | 0.1471 | 0.2481 | 0.1923 | 0.1618 | 0.1647 | Mean | 0.2727 | 0.2578 | 0.2771 | 0.2040 | 0.1980 | 0.1918 |
|
Table 8. SAD values of different algorithms on Urban data set
Category | MVCNMF | L1/2-NMF | Cauchy NMF | SSRNMF | SSWNMF | SSCNMF |
---|
Mean | 0.3629 | 0.3408 | 0.3426 | 0.3288 | 0.2623 | 0.2594 |
|
Table 9. RMSE values of different algorithms on Urban data set