• Laser & Optoelectronics Progress
  • Vol. 60, Issue 10, 1028006 (2023)
Shanxue Chen1,2 and Zhiyuan Hu1,3,*
Author Affiliations
  • 1Chongqing University of Posts and Telecommunications, School of Communication and Information Engineering, Chongqing, 400065, China
  • 2Engineering Research Center of Mobile Communications of the Ministry of Education, Chongqing, 400065, China
  • 3Chongqing Key Laboratory of Mobile Communications Technology, Chongqing, 400065, China
  • show less
    DOI: 10.3788/LOP213319 Cite this Article Set citation alerts
    Shanxue Chen, Zhiyuan Hu. Weighted Sparse Cauchy Nonnegative Matrix Factorization Hyperspectral Unmixing Based on Spatial-Spectral Constraints[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028006 Copy Citation Text show less
    Comparison of different loss functions
    Fig. 1. Comparison of different loss functions
    Spectra of five ground objects in simulated data set
    Fig. 2. Spectra of five ground objects in simulated data set
    Average SAD and RMSE on Jasper Ridge data set for different α and β
    Fig. 3. Average SAD and RMSE on Jasper Ridge data set for different α and β
    Comparison of SSCNMF algorithm for extracting endmembers on Jasper Ridge data set with real endmembers
    Fig. 4. Comparison of SSCNMF algorithm for extracting endmembers on Jasper Ridge data set with real endmembers
    Comparison of abundance maps on Jasper Ridge data set with real abundance maps by different algorithms
    Fig. 5. Comparison of abundance maps on Jasper Ridge data set with real abundance maps by different algorithms
    Comparison of SSCNMF algorithm for extracting endmembers on Urban data set with real endmembers
    Fig. 6. Comparison of SSCNMF algorithm for extracting endmembers on Urban data set with real endmembers
    Comparison of abundance maps on Urban data set with real abundance maps by different algorithms
    Fig. 7. Comparison of abundance maps on Urban data set with real abundance maps by different algorithms

    Input:hyperspectral image matrix R,parameters δα,and β

    Initialization:initialize end element matrix W0and abundance matrix H0 using VCA-FCLS;

    Step1:calculate error matrix Et=R-WtHtγt

    Step2:calculate auxiliary matrix Xijt=11+Eijt2

    Step3:calculate et=1L*NRij

    Step4:calculate γt+1=γt*1e0-1

    Step5:Xt cancel outliers to Xt+1

    Step6:applying ASC constraints Rf=Rδ1nTWf=Wδ1nTXf=Xδ1nT

    Step7:update abundance matrix Hkjt+1 according to Eq.(20)

    Step8:update error matrix Et+1=R-WtHt+1γt

    Step9:update auxiliary matrix Xijt+1=11+Eijt+12

    Step10:update element matrix Wikt+1 according to Eq.(22)

    Repeat above steps until stop condition is met;

    Output:element matrix W and abundance matrix H.

    Table 1. SSCNMF algorithm process
    SNR /dBMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
    100.25730.26740.24660.22130.21600.2042
    150.20410.19010.18430.15940.15650.1505
    200.16550.15180.15110.09130.09440.0889
    250.10980.09420.10350.08110.07350.0679
    300.09170.08860.08720.06410.05370.0503
    Table 2. SAD values after adding different levels of Gaussian white noise to each algorithm
    SNR /dBMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
    100.42740.41180.42080.34730.33580.3069
    150.37810.37100.35430.28730.25690.2381
    200.27180.25560.23710.15190.15010.1477
    250.14050.12890.14210.10880.09120.0784
    300.11750.10520.10560.07330.06980.0595
    Table 3. RMSE values after adding different levels of Gaussian white noise to each algorithm
    DMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
    0.10.15650.14970.08310.09900.10740.0579
    0.20.19960.17550.14630.15290.14060.0892
    0.30.21360.24380.19860.18200.18850.1002
    0.40.38530.33130.29650.29990.27340.1282
    Table 4. SAD values after adding salt and pepper noise of different densities to each algorithm
    DMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
    0.10.12810.12090.10930.08910.08570.0567
    0.20.16870.15240.16780.13560.14260.0722
    0.30.23490.23880.21160.19820.20310.1274
    0.40.29680.27840.28490.25230.23820.1519
    Table 5. RMSE values after adding salt and pepper noise of different densities to each algorithm
    CategoryMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
    Tree0.14740.13160.09130.12700.11120.1078
    Water0.11680.12390.12790.07920.08750.0558
    Soil0.08890.11790.10280.14570.08450.1203
    Road0.13580.11460.12560.12310.09810.0886
    Mean0.12240.12200.11190.11870.09530.0931
    Table 6. SAD values of different algorithms on Jasper Ridge data set
    CategoryMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
    Mean0.22230.20110.20220.18710.14310.1367
    Table 7. RMSE values of different algorithms on Jasper Ridge data set
    CategoryMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
    Asphalt0.24450.35800.22670.27720.23100.1806
    Glass0.36830.33240.28630.21180.20270.2015
    Tree0.28740.19350.34730.13470.19650.2204
    Roof0.19040.14710.24810.19230.16180.1647
    Mean0.27270.25780.27710.20400.19800.1918
    Table 8. SAD values of different algorithms on Urban data set
    CategoryMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
    Mean0.36290.34080.34260.32880.26230.2594
    Table 9. RMSE values of different algorithms on Urban data set
    Shanxue Chen, Zhiyuan Hu. Weighted Sparse Cauchy Nonnegative Matrix Factorization Hyperspectral Unmixing Based on Spatial-Spectral Constraints[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028006
    Download Citation