[1] Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 19, 44-57(2002).
[2] Luo W F, Zhong L, Zhang B et al. Independent component analysis for spectral unmixing in hyperspectral remote sensing image[J]. Spectroscopy and Spectral Analysis, 30, 1628-1633(2010).
[3] Picon A, Ghita O, Whelan P F et al. Fuzzy spectral and spatial feature integration for classification of nonferrous materials in hyperspectral data[J]. IEEE Transactions on Industrial Informatics, 5, 483-494(2009).
[4] Adams J B, Smith M O, Johnson P E. Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 Site[J]. Journal of Geophysical Research, 91, 8098-8112(1986).
[5] Yuan J, Zhang Y J, Gao F P. An overview on linear hyperspectral unmixing[J]. Journal of Infrared and Millimeter Waves, 37, 553-571(2018).
[6] Hu Y H, Lee H B, Scarpace F L. Optimal linear spectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 37, 639-644(1999).
[7] Tang X Y, Gao K, Ni G Q. Advances in nonlinear spectral unmixing of hyperspectral images[J]. Remote Sensing Technology and Application, 28, 731-738(2013).
[8] Wang L, Shi C, Diao C Y et al. A survey of methods incorporating spatial information in image classification and spectral unmixing[J]. International Journal of Remote Sensing, 37, 3870-3910(2016).
[9] Bioucas-Dias J M, Plaza A, Dobigeon N et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 354-379(2012).
[10] Moore B. Principal component analysis in linear systems: controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 26, 17-32(1981).
[11] Sun L M, Rieger J, Hinrichs H. Maximum noise fraction (MNF) transformation to remove ballistocardiographic artifacts in EEG signals recorded during fMRI scanning[J]. NeuroImage, 46, 144-153(2009).
[12] Nascimento J M P, Dias J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 43, 898-910(2005).
[13] Wang L G, Liu D F, Wang Q M. Geometric method of fully constrained least squares linear spectral mixture analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 3558-3566(2013).
[14] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 401, 788-791(1999).
[15] Miao L D, Qi H R. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 45, 765-777(2007).
[16] Xu G X, Wang Y W, Ma F et al. Hyperspectral unmixing method based on minimum volume sparse regularization[J]. Laser & Optoelectronics Progress, 57, 241010(2020).
[17] Zhang J Y, Zhang X R, Jiao L C. Sparse nonnegative matrix factorization for hyperspectral unmixing based on endmember independence and spatial weighted abundance[J]. Remote Sensing, 13, 2348(2021).
[18] Qian Y T, Jia S, Zhou J et al. Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 49, 4282-4297(2011).
[19] Lu X Q, Wu H, Yuan Y et al. Manifold regularized sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 2815-2826(2013).
[20] Jiang Q, Dong Y F, Peng J T et al. Maximum likelihood estimation based nonnegative matrix factorization for hyperspectral unmixing[J]. Remote Sensing, 13, 2637(2021).
[21] Huang R S, Li X R, Zhao L Y. Spectral-spatial robust nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 8235-8254(2019).
[22] Wang H T, Yang W J, Guan N Y. Cauchy sparse NMF with manifold regularization: a robust method for hyperspectral unmixing[J]. Knowledge-Based Systems, 184, 104898(2019).
[23] Peng J T, Jiang F, Sun W W et al. Cauchy NMF for hyperspectral unmixing[C], 2384-2387(2020).
[24] Guan N Y, Liu T L, Zhang Y et al. Truncated Cauchy non-negative matrix factorization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 246-259(2019).
[25] Zhang S Q, Zhang G R, Li F et al. Spectral-spatial hyperspectral unmixing using nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5505713(2022).
[26] Nikolova M, Ng M K. Analysis of half-quadratic minimization methods for signal and image recovery[J]. SIAM Journal on Scientific Computing, 27, 937-966(2005).
[27] Boyd S P, Vandenberghe L[M]. Convex optimization(2004).
[28] Nagy F. Parameter estimation of the Cauchy distribution in information theory approach[J]. Journal of Universal Computer Science, 12, 1332-1344(2006).
[29] Dias J, Nascimento J. Vertex component analysis[M]. Image processing for remote sensing, 149-173(2007).
[30] Heylen R, Burazerovic D, Scheunders P. Fully constrained least squares spectral unmixing by simplex projection[J]. IEEE Transactions on Geoscience and Remote Sensing, 49, 4112-4122(2011).
[31] Wang N, Du B, Zhang L P. An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6, 554-569(2013).
[32] Huang R, Li X, Zhao L. Spectral-spatial robust nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 8235-8254(2019).