
- Matter and Radiation at Extremes
- Vol. 7, Issue 3, 038402 (2022)
Abstract
I. INTRODUCTION
Molecular nitrogen (N2) is the most abundant component of Earth’s atmosphere and one of the most stable molecules owing to its strong N≡N triple bond. There is a large energy difference between single/double nitrogen bonds (160 and 418 kJ/mol for N–N and N=N, respectively) and the N≡N triple bond (954 kJ/mol).1 Therefore, polynitrogen composed of mixed single and double bonds can store a substantial amount of chemical energy. The stored energy will be released when decomposition of the polymeric nitrogen is triggered, producing pollution-free N2 molecules, in an oxygen-free process. However, the high bond energy of the N2 molecule makes it highly unreactive. It is difficult to synthesize polymeric nitrogen from N2 molecules. To break nitrogen triple bonds and obtain nitrogen polymers, extreme conditions such as high pressures and high temperatures become necessary to overcome the high energy barriers.2,3 For example, pressure can be used to break the nitrogen bonds, with the formation of some unexpected nitrogen compounds.4 In some nitrogen-rich cases, pressure can enhance the effect of electronic delocalization, thus helping to dissociate molecules and form polymeric structures.
Tremendous efforts have been made to obtain novel polymeric nitrogen structures under high pressures in both theoretical and experimental studies.2,3,5–9 More than a decade after its theoretical prediction by Mailhiot et al.,5 an experimental breakthrough was eventually made by Eremets et al. in 2004 in their synthesis of a cubic-gauche nitrogen structure (cg-N).2 This cg-N contains pure N–N single bonds and thus possesses an extremely high energy density, which is reported to be five times higher than that of the current most powerful energetic materials.5 Since then, several polymeric nitrogen structures have been synthesized: hexagonal layered polymeric nitrogen (HLP-N), layered polymeric nitrogen (LP-N), and a black phosphorus structure (BP-N).10–13 However, the pressure–temperature conditions required for these polymeric nitrogen syntheses are very high, exceeding 110 GPa and 2000 K. Such extreme conditions cause great practical difficulties, and therefore the search for potential high-energy-density materials (HEDMs) that can be synthesized under moderate pressures is still an important task.
Recently, counter-ions and nitrogen fragments have been used to construct nitrogen-bearing compounds involving ionic bonding, including N5 and N6 rings, nitrogen azide, and polymeric N4 chains (poly-
In this work, we focus on the metals Al, Ga, Y and Ti, which can provide three or four valence electrons. We predict that the poly-
II. METHODS
We carry out a crystal structure search using MAGUS (“machine learning and graph theory assisted universal structure searcher”),40,41 which is accelerated through the use of graph theory42 and machine learning potentials. This method has been successfully applied to many systems.40,43–48 To generate new structures containing the desired
III. RESULTS AND DISCUSSION
Using the crystal structure search method described above, we predict several metal nitrides structures, as shown in Figs. 1(a)–1(c). Diverse channel frames are constructed from different coordinate bonds between metal atoms and poly-
Figure 1.(a) Isostructural AlN6 and GaN6 of the
We calculate the relative enthalpy of MNx (M = Al, Ga, Y, and Ti) as shown in Fig. 2. By taking the enthalpy difference of MNx relative to the ground-state metal nitrides (MN) plus bulk nitrogen phase at these pressures, ΔH = MNx − MN − (x − 1)N, we can confirm the energetic stabilities of MNx compounds under pressure. Here, the Pa-3 (α) and P41212 phases of the N2 molecular crystal structures are selected for the relative-enthalpy calculations at 0 GPa and at higher pressures, respectively.65Fm-3m-MN is chosen as the ground state for the Al–N, Y–N and Ti–N systems. The ground state for the GaN structure in the Ga–N system favors the P63/mmc phase, which tends to transform into the Fm-3m phase above 32.5 GPa.62 We find that AlN6, GaN6, and TiN8 are enthalpically stable above pressures of around 40.8, 39.3, and 40.1 GPa, respectively. However, YN6 turns out to be stable above a much lower external pressure (around 21.7 GPa). Therefore, we suggest that MNx might be synthesized at moderate pressures around 40 GPa or lower. In addition, no imaginary frequency of the phonon spectrum has been found in the Brillouin zones of these MNx structures, indicating their dynamical stability, as shown in Fig. S1 in the
Figure 2.Enthalpy difference of MN
To confirm the thermal stabilities of the newly predicted MNx, we conduct ab initio molecular dynamics (AIMD) simulations for the MNx (2 × 2 × 2) supercells at high temperatures for 12 ps with an interval of 1 fs. The supercells contain 224 atoms for the AlN6, GaN6, and YN6 structures and 144 atoms for TiN8. The AIMD calculations are performed within the canonical ensemble for AlN6 and GaN6 at 20 GPa, for YN6 at 40 GPa, and for TiN8 at 30 GPa. The resulting radial distribution functions (RDFs) are presented in Fig. 3 and in Fig. S2 in the
Figure 3.(a)–(d) Radial distribution functions (RDFs)
The calculated density of states (DOS) exhibits metallic features for all MNx structures, as shown in Figs. 4(a)–4(d). The main contribution to the DOS at the Fermi energy is from the N-2p orbital for the AlN6 and GaN6 structures, while the d orbitals of the transition metals Y and Ti make additional contributions to the DOS around the Fermi energy for YN6, and TiN8. We carry out a projected crystal orbital Hamilton population (pCOHP) calculation to distinguish the bond features in the predicted MNx nitrides. Using minus pCOHP (−pCOHP), we can partition the bond energy into bonding states with positive values and antibonding states with negative values. Figures 4(e)–4(h) reveal similar bond features for these four structures. For N–N bonds, although most of the states below the Fermi level can be attributed to bonding states, there are still some antibonding states existing just below the Fermi level. For M–N bonds, however, almost all the states below the Fermi level are bonding states. The minus integral pCOHP (−IpCOHP)66 values at the Fermi level, which represent the pairwise interatomic interaction strength, are listed in Table I. The −IpCOHP values of N–N bonds are at least twice those of M–N bonds, which suggests that the N–N bonds have greater pairwise interatomic interaction strengths than the M–N bonds.
Figure 4.(a)–(d) Density of states (DOS) and (e)–(h) minus projected crystal orbital Hamilton population (−pCOHP) for
Average −IpCOHP/bonds (eV/bond) | ||
---|---|---|
Compound | M–N | N–N |
P21-AlN6 | 4.83 | 14.26 |
P21-GaN6 | 4.28 | 14.51 |
P-1-YN6 | 3.12 | 15.30 |
P4/mnc-TiN8 | 2.72 | 12.46 |
Table 1. Average −IpCOHP values for MNx.
To explain the electronic features of MNx, we apply MO theory61 to analyze the electron orbitals and describe the coordination of the metal atoms. For the isostructural AlN6 and GaN6, two types of poly-
Figure 5.Sketches of (a) type A and (b) type B chains for N4–metal coordination, and fragment structures of (c) type A and (d) type B poly-
When the electron density ρ is too low to allow analysis of the results for the electron localization function, we can identify the noncovalent interactions (NCIs) by calculating the reduced density gradient (RDG) s, which is defined as
Figure 6.Plots of the RDG
Nitrides containing poly-
ρ (g/cm3) | Eg (kJ/g) | Ev (kJ/cm3) | V (km/s) | P (kbar) | |
---|---|---|---|---|---|
AlN6 | 1.93 | 4.41 | 8.54 | 10.30 | 462 |
GaN6 | 3.48 | 3.94 | 13.75 | 10.38 | 1020 |
YN6 | 4.00 | 2.71 | 10.86 | 12.67 | 993 |
TiN8 | 2.91 | 4.50 | 13.10 | 13.43 | 1024 |
TNT | 1.64 | 4.30 | 7.05 | 6.90 | 190 |
HMX | 1.90 | 5.70 | 10.83 | 9.10 | 393 |
Table 2. Comparison of the detonation properties of MNx structures estimated using the Kamlet–Jacobs empirical equations
IV. CONCLUSIONS
By applying a structure search method accelerated by machine learning, we have successfully predicted four metal nitrides constructed from poly-
SUPPLEMENTARY MATERIAL
ACKNOWLEDGMENTS
Acknowledgment. J.S. gratefully acknowledges financial support from the National Natural Science Foundation of China (Grant Nos. 12125404, 11974162, and 11834006), and the Fundamental Research Funds for the Central Universities. K.X. acknowledges support from the National Natural Science Foundation of China under Grant No. 12004185, the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant No. 20KJB140016, and the Scientific Research Start-up Funds of Nanjing Forestry University (No. 163101110), and financial support from a Project funded by the China Postdoctoral Science Foundation (Grant No. 2019M651767). The calculations were carried out using supercomputers at the High Performance Computing Center of the Collaborative Innovation Center of Advanced Microstructures, the High-Performance Supercomputing Center of Nanjing University, and the High-Performance Computing Facility of Nanjing Forestry University.
References
[1] D. P.Stevenson. The strengths of chemical bonds. J. Am. Chem. Soc., 77, 2350(1955).
[2] R.Boehler, D. A.Dzivenko, M. I.Eremets, A. G.Gavriliuk, I. A.Trojan. Single-bonded cubic form of nitrogen. Nat. Mater., 3, 558-563(2004).
[3] J. C.Crowhurst, I. I.Oleynik, V. B.Prakapenka, E.Stavrou, B. A.Steele, J. M.Zaug. High-pressure synthesis of a pentazolate salt. Chem. Mater., 29, 735-741(2017).
[4] H.Lin, M.Miao, Y.Sun, E.Zurek. Chemistry under high pressure. Nat. Rev. Chem., 4, 508-527(2020).
[5] C.Mailhiot, A. K.McMahan, L. H.Yang. Polymeric nitrogen. Phys. Rev. B, 46, 14419-14435(1992).
[6] K. O.Christe, J. A.Sheehy, F. S.Tham, A.Vij, V.Vij, W. W.Wilson. Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of
[7] G.Gaiffe, G.Garbarino, D.Laniel, P.Loubeyre, G.Weck. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett., 9, 1600-1604(2018).
[8] X.Feng, J.Hao, W.Lei, Y.Li, D.Liu, H.Liu, Y.Ma, S. A. T.Redfern. Route to high-energy density polymeric nitrogen
[9] S.Fu, E.Greenberg, J. F.Lin, J.Liu, V. B.Prakapenka, N. P.Salke, J.Sun, K.Xia, Y.Zhang. Tungsten hexanitride with single-bonded armchairlike hexazine structure at high pressure. Phys. Rev. Lett., 126, 065702(2021).
[10] M.Kim, J.Smith, D.Tomasino, C.-S.Yoo. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett., 113, 205502(2014).
[11] G.Geneste, D.Laniel, P.Loubeyre, M.Mezouar, G.Weck. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys. Rev. Lett., 122, 066001(2019).
[12] S.Chariton, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, D.Laniel, V.Milman, A.Pakhomova, V.Prakapenka, B.Winkler. High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Phys. Rev. Lett., 124, 216001(2020).
[13] A. A.Adeleke, H.Gou, C.Ji, B.Li, W.Liu, H. K.Mao, W. L.Mao, Y.Meng, V. B.Prakapenka, G.Shen, J. S.Smith, B.Wan, L.Yang, Y.Yao. Nitrogen in black phosphorus structure. Sci. Adv., 6, eaba9206(2020).
[14] H.Liu, Y.Ma, F.Peng, Y.Yao. Crystalline LiN5 predicted from first-principles as a possible high-energy material. J. Phys. Chem. Lett., 6, 2363-2366(2015).
[15] T.Gao, H.Liu, A.Majumdar, F.Peng, Y.Yao, S.Zhu. Stable calcium nitrides at ambient and high pressures. Inorg. Chem., 55, 7550-7555(2016).
[16] I. I.Oleynik, B. A.Steele. Sodium pentazolate: A nitrogen rich high energy density material. Chem. Phys. Lett., 643, 21-26(2016).
[17] B.Hu, M.Lu, C.Sun, C.Yu, C.Zhang. Synthesis and characterization of the pentazolate anion
[18] Q.Lin, M.Lu, C.Shen, P.Wang, Q.Wang, Y.Xu. A series of energetic metal pentazolate hydrates. Nature, 549, 78-81(2017).
[19] Y.Cai, P.Hou, D.Li, L.Lian, B.Liu, B.Wang, S.Wei. Structural phase transition and bonding properties of high-pressure polymeric CaN3. RSC Adv., 8, 4314-4320(2018).
[20] G.Frapper, B.Huang. Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds. Chem. Mater., 30, 7623-7636(2018).
[21] T.Cui, D.Duan, D.Li, Y.Liu, Z.Liu, F.Tian. Metallic and anti-metallic properties of strongly covalently bonded energetic AlN5 nitrides. Phys. Chem. Chem. Phys., 21, 12029-12035(2019).
[22] H.Gao, C.Liu, J.Sun, Q.Wu, K.Xia, J.Yuan, X.Zheng. Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts. J. Phys. Chem. C, 123, 10205-10211(2019).
[23] H.Gao, C.Liu, J.Sun, Q.Wu, K.Xia, J.Yuan, X.Zheng. Predictions on high-power trivalent metal pentazolate salts. J. Phys. Chem. Lett., 10, 6166-6173(2019).
[24] T.Bi, Y.Du, L.Gao, M.Lu, Y.Tian, X.Xu, Y.Yan, D.Zhang, M.Zhang, S.Zhang. Predicted crystal structures of titanium nitrides at high pressures. Comput. Mater. Sci., 180, 109720(2020).
[25] B.Liu, X.Shi, Z.Yao. New high pressure phases of the Zn–N system. J. Phys. Chem. C, 124, 4044-4049(2020).
[26] G.Frapper, F.Guégan, R.Larhlimi, H.Valencia, B.Wang. Prediction of novel tin nitride Sn
[27] C.Niu, X.Wang, Z.Zeng, H.Zhang, J.Zhang, J.Zhao. Polymerization of nitrogen in nitrogen–fluorine compounds under pressure. J. Phys. Chem. Lett., 12, 5731-5737(2021).
[28] J.Sun, J.Wu, K.Xia, J.Yuan. High-energy-density pentazolate salts: CaN10 and BaN10. Sci. China: Phys., Mech. Astron., 64, 218211(2021).
[29] G.Frapper, B.Huang, A. R.Oganov, S.Yu, Q.Zeng, L.Zhang. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–mitrogen Mg
[30] L.Liu, G.Yang, S.Zhang, Z.Zhao. Pressure-induced stable BeN4 as a high-energy density material. J. Power Sources, 365, 155-161(2017).
[31] P.Chen, F.Gao, N.Gong, H.Gou, H.Liu, T.Shen, R.Tian, B.Wan, L.Wu, Y.Yao. Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species. Chem. Mater., 30, 8476-8485(2018).
[32] B.Liu, B.-B.Liu, X.-H.Shi, Z.Yao. Pressure-stabilized new phase of CaN4. Chin. Phys. Lett., 37, 047101(2020).
[33] H.Li, Z.Li, B.Liu, S.Niu, X.Shi, Z.Yao. New cadmium–nitrogen compounds at high pressures. Inorg. Chem., 60, 6772-6781(2021).
[34] I. A.Abrikosov, G.Aprilis, M.Bykov, E.Bykova, I.Chuvashova, N.Dubrovinskaia, L.Dubrovinsky, K.Glazyrin, E.Koemets, I.Kupenko, H. P.Liermann, C.McCammon, M.Mezouar, A. V.Ponomareva, V.Prakapenka, F.Tasnádi. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat. Commun., 9, 2756(2018).
[35] M.Bykov, E.Bykova, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, E.Koemets, D.Laniel, B.Winkler. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun., 10, 4515(2019).
[36] A. I.Abrikosov, I. A.Abrikosov, T.Bin Masood, M.Bykov, S.Chariton, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, K.Glazyrin, A. F.Goncharov, M.Hanfland, I.Hotz, M. I.Katsnelson, D.Laniel, M. F.Mahmood, A. V.Ponomareva, V. B.Prakapenka, A. N.Rudenko, J. S.Smith, F.Tasnádi. High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN4 polymorph. Phys. Rev. Lett., 126, 175501(2021).
[37] I. A.Abrikosov, M.Bykov, E.Bykova, S.Chariton, L.Dubrovinsky, A. F.Goncharov, M. F.Mahmood, A. V.Ponomareva, V. B.Prakapenka. Stabilization of polynitrogen anions in tantalum–nitrogen compounds at high pressure. Angew. Chem., Int. Ed., 60, 9003-9008(2021).
[38] I. A.Abrikosov, G.Aprilis, M.Bykov, E.Bykova, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, K.Glazyrin, E.Koemets, H.-P.Liermann, A. V.Ponomareva, F.Tasnádi, J.Tidholm. High-pressure synthesis of a nitrogen-rich inclusion compound ReN8·
[39] I. A.Abrikosov, M.Bykov, E.Bykova, S.Chariton, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, A. F.Goncharov, M.Hanfland, S.Khandarkhaeva, H. P.Liermann, M.Mahmood, A. V.Ponomareva, V.Prakapenka, P.Sedmak, F.Tasnádi, J.Tidholm. High-pressure synthesis of metal–inorganic frameworks Hf4N20·N2, WN8·N2, and Os5N28·3N2 with polymeric nitrogen linkers. Angew. Chem., Int. Ed., 59, 10321-10326(2020).
[40] H.Gao, C.Liu, J.Sun, H.-T.Wang, K.Xia, D.Xing, J.Yuan. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci. Bull., 63, 817-824(2018).
[41] H.Gao, Y.Han, J.Sun, J.Wang. Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory. Fundam. Res., 1, 466-471(2021).
[42] H.Gao, Z.Guo, J.Sun, J.Wang. Determining dimensionalities and multiplicities of crystal nets. npj Comput. Mater., 6, 143(2020).
[43] H.Gao, C.Liu, R. J.Needs, C. J.Pickard, J.Sun, H.-T.Wang, Y.Wang, D.Xing. Multiple superionic states in helium–water compounds. Nat. Phys., 15, 1065-1070(2019).
[44] Q.Gu, J.Sun, D.Xing. Superconducting single-layer T-graphene and novel synthesis routes. Chin. Phys. Lett., 36, 097401(2019).
[45] H.Gao, A.Hermann, C.Liu, M.Miao, R. J.Needs, C. J.Pickard, J.Sun, H.-T.Wang, Y.Wang, D.Xing. Plastic and superionic helium ammonia compounds under high pressure and high temperature. Phys. Rev. X, 10, 021007(2020).
[46] H.Gao, A.Hermann, C.Liu, R. J.Needs, C. J.Pickard, J.Sun, H.-T.Wang, D.Xing. Coexistence of plastic and partially diffusive phases in a helium-methane compound. Natl. Sci. Rev., 7, 1540-1547(2020).
[47] H.Gao, Y.Han, C.Liu, X.Lu, J.Shi, J.Sun, H. T.Wang, J.Wang, D.Xing. Mixed coordination silica at megabar pressure. Phys. Rev. Lett., 126, 035701(2021).
[48] C.Ding, H.Gao, Y.Han, J.Sun, J.Wang, J.Yuan. High energy density polymeric nitrogen nanotubes inside carbon nanotubes. Chin. Phys. Lett., 39, 036101(2022).
[49] J.Furthmüller, G.Kresse. Efficient iterative schemes for
[50] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 17953-17979(1994).
[51] K.Burke, L. A.Constantin, G. I.Csonka, J. P.Perdew, A.Ruzsinszky, G. E.Scuseria, O. A.Vydrov, X.Zhou. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett., 100, 136406(2008).
[52] D.Joubert, G.Kresse. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758-1775(1999).
[53] J.Antony, S.Ehrlich, S.Grimme, H.Krieg. A consistent and accurate
[54] S.Ehrlich, L.Goerigk, S.Grimme. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 32, 1456-1465(2011).
[55] I.Tanaka, A.Togo. First principles phonon calculations in materials science. Scr. Mater., 108, 1-5(2015).
[56] V. L.Deringer, R.Dronskowski, S.Maintz, A. L.Tchougréeff. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem., 34, 2557-2567(2013).
[57] V. L.Deringer, R.Dronskowski, S.Maintz, A. L.Tchougréeff. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem., 37, 1030-1035(2016).
[58] M. A.Blanco, V.Lua?a, A.Otero-de-la-Roza, A. M.Pendás. Critic: A new program for the topological analysis of solid-state electron densities. Comput. Phys. Commun., 180, 157-166(2009).
[59] E. R.Johnson, V.Lua?a, A.Otero-de-la-Roza. Critic2: A program for real-space analysis of quantum chemical interactions in solids. Comput. Phys. Commun., 185, 1007-1018(2014).
[60] F.Izumi, K.Momma.
[61] J. K.Burdett, Y.Jean, F.Volatron. An Introduction to Molecular Orbitals(1993).
[62] W. R. L.Lambrecht, S.Limpijumnong. Homogeneous strain deformation path for the wurtzite to rocksalt high-pressure phase transition in GaN. Phys. Rev. Lett., 86, 91-94(2001).
[63] F.Ali Sahraoui, N.Bouarissa, S.Zerroug. Ab initio calculations of yttrium nitride: Structural and electronic properties. Appl. Phys. A, 97, 345-350(2009).
[64] K.Bao, T.Cui, D.Duan, D.Li, B.Liu, Z.Liu, F.Tian, W.Wang, S.Wei, H.Yu. Bonding properties of aluminum nitride at high pressure. Inorg. Chem., 56, 7494-7500(2017).
[65] R. J.Needs, C. J.Pickard. High-pressure phases of nitrogen. Phys. Rev. Lett., 102, 125702(2009).
[66] E. J. M.Hensen, E. A.Pidko, R. Y.Rohling, I. C.Tranca. Correlations between density-based bond orders and orbital-based bond energies for chemical bonding analysis. J. Phys. Chem. C, 123, 2843-2854(2019).
[67] A. J.Cohen, J.Contreras-García, E. R.Johnson, S.Keinan, P.Mori-Sánchez, W.Yang. Revealing noncovalent interactions. J. Am. Chem. Soc., 132, 6498-6506(2010).
[68] A.Dalke, W.Humphrey, K.Schulten. VMD: Visual molecular dynamics. J. Mol. Graphics, 14, 33-38(1996).
[69] S. J.Jacobs, M. J.Kamlet. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys., 48, 23-35(1968).
[70] X.Li, H.Niu, A. R.Oganov, J.Zhang. Pressure-stabilized hafnium nitrides and their properties. Phys. Rev. B, 95, 020103(2017).

Set citation alerts for the article
Please enter your email address