• Advanced Photonics Nexus
  • Vol. 3, Issue 2, 026004 (2024)
Jinhai Zou1,2,†, Qiujun Ruan1,2, Tingting Chen2, Hang Wang1..., Luming Song1, Yikun Bu1 and Zhengqian Luo1,2,*|Show fewer author(s)
Author Affiliations
  • 1Xiamen University, School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen, China
  • 2Shenzhen Research Institution of Xiamen University, Shenzhen, China
  • show less
    DOI: 10.1117/1.APN.3.2.026004 Cite this Article Set citation alerts
    Jinhai Zou, Qiujun Ruan, Tingting Chen, Hang Wang, Luming Song, Yikun Bu, Zhengqian Luo, "635 nm femtosecond fiber laser oscillator and amplifier," Adv. Photon. Nexus 3, 026004 (2024) Copy Citation Text show less
    References

    [1] M. E. Fermann, I. Hartl. Ultrafast fibre lasers. Nat. Photonics, 7, 868-874(2013).

    [2] M. Malinauskas et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl., 5, e16133(2016).

    [3] D. Graham-Rowe, R. Won. Lasers for engine ignition. Nat. Photonics, 2, 515-517(2008).

    [4] K. Sugioka, Y. Cheng. Ultrafast lasers-reliable tools for advanced materials processing. Light Sci. Appl., 3, e149(2014).

    [5] P. Á. Corkum, F. Krausz. Attosecond science. Nat. Phys., 3, 381-387(2007).

    [6] H. He et al. Deep-tissue two-photon microscopy with a frequency-doubled all-fiber mode-locked laser at 937 nm. Adv. Photonics Nexus, 1, 026001(2022).

    [7] F. Wang et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol., 3, 738-742(2008).

    [8] Z. Sun et al. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803-810(2010).

    [9] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 7, 842-845(2013).

    [10] M. Li et al. Mode-locked femtosecond 910 nm Nd: fibre laser with phase biased non-linear loop mirror. Electron. Lett., 53, 1479-1481(2017).

    [11] R. I. Woodward et al. Generation of 70-fs pulses at 2.86  μm from a mid-infrared fiber laser. Opt. Lett., 42, 4893-4896(2017). https://doi.org/10.1364/OL.42.004893

    [12] R. Woodward, M. Majewski, S. Jackson. Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30  μm. APL Photonics, 3, 116106(2018). https://doi.org/10.1063/1.5045799

    [13] J. Ma et al. Review of mid-infrared mode-locked laser sources in the 2.0  μm-3.5  μm spectral region. Appl. Phys. Rev., 6, 021317(2019). https://doi.org/10.1063/1.5037274

    [14] Y. Han et al. Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers. Progr. Quantum Electron., 71, 100264(2020).

    [15] K. Furusawa et al. Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser. Appl. Phys. A, 69, S359-S366(1999).

    [16] J. Krüger, W. Kautek. Femtosecond pulse visible laser processing of fibre composite materials. Appl. Surf. Sci., 106, 383-389(1996).

    [17] Z. Lin, M. Hong. Femtosecond laser precision engineering: from micron, submicron, to nanoscale. Ultrafast Sci., 2021, 9783514(2021).

    [18] G. Hüttmann, C. Yao, E. Endl. New concepts in laser medicine: towards a laser surgery with cellular precision. Med. Laser Appl., 20, 135-139(2005).

    [19] A. D. Ludlow et al. Optical atomic clocks. Rev. Mod. Phys., 87, 637-701(2015).

    [20] A. Bartels, D. Heinecke, S. A. Diddams. Passively mode-locked 10 GHz femtosecond Ti:sapphire laser. Opt. Lett., 33, 1905-1907(2008).

    [21] M. K. Shukla, S. Kumar, R. Das. Single-pass, efficient type-I phase-matched frequency doubling of high-power ultrashort-pulse Yb-fiber laser using LiB3O5. Appl. Phys. B, 122, 1-6(2016). https://doi.org/10.1007/s00340-016-6393-0

    [22] K. Moutzouris et al. Sum frequency generation of continuously tunable blue pulses from a two-branch femtosecond fiber source. Opt. Commun., 274, 417-421(2007).

    [23] J. Cao et al. Femtosecond OPO based on MgO: PPLN synchronously pumped by a 532 nm fiber laser. Laser Phys., 27, 055402(2017).

    [24] R. Smart et al. CW room temperature operation of praseodymium-doped fluorozirconate glass fibre lasers in the blue-green, green and red spectral regions. Opt. Commun., 86, 333-340(1991).

    [25] S. Ji et al. High power downconversion deep-red emission from Ho3+-doped fiber lasers. Nanophotonics, 11, 1603-1609(2022). https://doi.org/10.1515/nanoph-2021-0763

    [26] Y. Fujimoto, O. Ishii, M. Yamazaki. Yellow laser oscillation in Dy3+-doped waterproof fluoro-aluminate glass fibre pumped by 398.8 nm GaN laser diodes. Electron. Lett., 46, 586-587(2010). https://doi.org/10.1049/el.2010.0488

    [27] Z. Luo et al. Compact self-Q-switched green upconversion Er: ZBLAN all-fiber laser operating at 543.4 nm. Opt. Lett., 41, 2258-2261(2016).

    [28] H. Okamoto et al. Visible–NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode. Opt. Express, 17, 20227-20232(2009). https://doi.org/10.1364/OE.17.020227

    [29] H. Wang et al. High-efficiency, yellow-light Dy3+-doped fiber laser with wavelength tuning from 568.7 to 581.9 nm. Opt. Lett., 44, 4423-4426(2019). https://doi.org/10.1364/OL.44.004423

    [30] J. Zou et al. Tunable, continuous-wave, deep-ultraviolet laser generation by intracavity frequency doubling of visible fiber lasers. J. Lightwave Technol., 40, 3900-3906(2022).

    [31] J. Zou et al. Direct generation of watt-level yellow Dy3+-doped fiber laser. Photonics Res., 9, 446-451(2021). https://doi.org/10.1364/PRJ.410913

    [32] J. Zou et al. 3.6 W compact all-fiber Pr3+-doped green laser at 521 nm. Adv. Photonics, 4, 056001(2022). https://doi.org/10.1117/1.AP.4.5.056001

    [33] C. Zhang et al. Direct generation of 5 W all-fiber red laser at 635 nm. Opt. Laser Technol., 160, 109050(2023).

    [34] E. Kifle et al. Watt-level visible laser in double-clad Pr3+-doped fluoride fiber pumped by a GaN diode. Opt. Lett., 46, 74-77(2021). https://doi.org/10.1364/OL.413673

    [35] M.-P. Lord et al. 2.3 W monolithic fiber laser operating in the visible. Opt. Lett., 46, 2392-2395(2021).

    [36] E. Kifle et al. Deep-red double-clad fiber laser at 717 nm. Opt. Lett., 48, 1494-1497(2023).

    [37] J. Zou et al. 4.1 W all-fiber Pr3+-doped deep-red laser at 717 nm. J. Lightwave Technol., 42, 332-338(2024). https://doi.org/10.1109/JLT.2023.3307811

    [38] W. Li et al. 716 nm deep-red passively Q-switched Pr: ZBLAN all-fiber laser using a carbon-nanotube saturable absorber. Opt. Lett., 42, 671-674(2017).

    [39] J. Zou et al. Visible-wavelength all-fiber vortex laser. IEEE Photonics Technol. Lett., 31, 1487-1490(2019).

    [40] J. Zou et al. Visible-wavelength pulsed lasers with low-dimensional saturable absorbers. Nanophotonics, 9, 2273-2294(2020).

    [41] J. Zou et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format. Light Sci. Appl., 9, 61(2020).

    [42] H. Sun et al. Visible-wavelength all-fiber mode-locked vortex laser. J. Lightwave Technol., 40, 191-195(2022).

    [43] Q. Ruan et al. Visible-wavelength spatiotemporal mode-locked fiber laser delivering 9 ps, 4 nJ pulses at 635 nm. Laser Photonics Rev., 16, 2100678(2022).

    [44] S. Luo et al. High-power yellow DSR pulses generated from a mode-locked Dy:ZBLAN fiber laser. Opt. Lett., 47, 1157-1160(2022).

    [45] S. Luo et al. Ultrafast true-green Ho:ZBLAN fiber laser inspired by the TD3 AI algorithm. Opt. Lett., 47, 5881-5884(2022). https://doi.org/10.1364/OL.476942

    [46] M.-P. Lord et al. Visible femtosecond fiber laser. Opt. Lett., 48, 3709-3712(2023).

    [47] G. Liu et al. Robust 700 MHz mode-locked Yb: fiber laser with a biased nonlinear amplifying loop mirror. Opt. Express, 26, 26003-26008(2018).

    [48] K. Yin et al. Self-starting all-fiber PM Er: laser mode locked by a biased nonlinear amplifying loop mirror. Chin. Phys. B, 28, 124203(2019).

    [49] Y. Song et al. Tunable all-normal-dispersion femtosecond Yb: fiber laser with biased nonlinear amplifying loop mirror. Appl. Phys. Express, 14, 102002(2021).

    [50] S. Wang et al. Femtosecond all-polarization-maintaining Nd fiber laser at 920 nm mode locked by a biased NALM. Opt. Express, 29, 38199-38205(2021).

    [51] Z.-W. Lin et al. 1.7  μm figure-9 Tm-doped ultrafast fiber laser. Opt. Express, 30, 32347-32354(2022). https://doi.org/10.1364/OE.468769

    [52] X. Li et al. Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser. Opt. Lett., 48, 3051-3054(2023).