• Journal of Advanced Dielectrics
  • Vol. 14, Issue 4, 2340008 (2024)
Wanfeng Zhuang, Weiling Wang, Yaxia Luo, Hong Liu*, and Jianguo Zhu
Author Affiliations
  • College of Materials Science and Engineering, Sichuan University, Chengdu 610065 P. R. China
  • show less
    DOI: 10.1142/S2010135X23400088 Cite this Article
    Wanfeng Zhuang, Weiling Wang, Yaxia Luo, Hong Liu, Jianguo Zhu. Enhanced piezoelectric properties in low-temperature sintered Pb(Zr,Ti)O3-based ceramics via Yb2O3 doping[J]. Journal of Advanced Dielectrics, 2024, 14(4): 2340008 Copy Citation Text show less
    References

    [1] T. Pu, H. Chen, J. Xing, Y. Luo, S. Fan, H. Liu, Q. Chen, J. Zhu. Ultra-high-temperature piezoelectric responses and ultra-high thermal stability of piezoelectricity in ceramic PbZr0.54Ti0.46O3. J. Am. Ceram. Soc., 105, 4152(2022). https://doi.org/10.1111/jace.18388

    [2] R. Nie, Q. Zhang, Y. Yue, H. Liu, Y. Chen, Q. Chen, J. Zhu, P. Yu, D. Xiao. Phase structure–electrical property relationships in Pb(Ni1∕3Nb2∕3)O3–Pb(Zr,Ti)O3-based ceramics. J. Appl. Phys., 119, 124111(2016). https://doi.org/10.1063/1.4945108

    [3] H. Chen, T. Pu, Y. Luo, S. Fan, Q. Chen, H. Liu, J. Zhu. Enhancement of piezoelectric properties in low-temperature sintering PZN–PZT ceramics by Sr2+ substitution. J. Electron. Mater., 51, 1261(2022). https://doi.org/10.1007/s11664-021-09393-7

    [4] H. Chen, T. Pu, S. Fan, H. Liu, J. Zhu, Q. Chen. Enhanced electrical properties in low-temperature sintering PNN–PMW–PZT ceramics by Yb2O3 doping. Mater. Res. Bull., 146, 111576(2022). https://doi.org/10.1016/j.materresbull.2021.111576

    [5] D. Wan, Q. Li, J. Y. Choi, J. W. Choi, Y. Yang, S. J. Yoon. Low-temperature sintered Pb(Zr,Ti)O3–Pb(Mn,Sb)O3–Pb(Zn,Nb)O3 for multilayer ceramic actuators. J. Appl. Phys., 49, 071503(2010). https://doi.org/10.1143/JJAP.49.071503

    [6] S. H. Han, Y. R. Cho, H. Y. Park, G. J. Park, H. W. Kang, H. G. Lee. Low temperature sintering and piezoelectric properties of 0.6Pb(Zr1−xTix)O3–0.4Pb(Zn1∕6Ni1∕6Nb1∕3)O3 ceramics. J. Electroceram., 33, 64(2014). https://doi.org/10.1007/s10832-014-9918-0

    [7] C. H. Nam, H. Y. Park, I. T. Seo, J. H. Choi, M. R. Joung, S. Nahm, H. J. Lee, Y.-H. Kim. Low-temperature sintering and piezoelectric properties of 0.65Pb(Zr1−xTix)O3–0.35Pb(Ni0.33Nb0.67)O3 ceramics. J. Am. Ceram. Soc., 94, 3442(2011). https://doi.org/10.1111/j.1551-2916.2011.04538.x

    [8] S. Y. Yoo, J. Y. Ha, S. J. Yoon, J. W. Choi. High-power properties of piezoelectric hard materials sintered at low temperature for multilayer ceramic actuators. J. Eur. Ceram. Soc., 33, 1769(2013). https://doi.org/10.1016/j.jeurceramsoc.2013.02.014

    [9] J. Yoo, S. Lee. Piezoelectric properties of MnO2 doped low temperature sintering Pb(Mn1∕3Nb2∕3)O3–Pb(Ni1∕3Nb2∕3)O3–Pb(Zr0.50Ti0.50)O3 ceramics. J. Electroceram., 23, 432(2009). https://doi.org/10.1007/s10832-008-9483-5

    [10] Z. Zhu, G. Li, B. Li, Q. Yin, K. Jiang. The influence of Yb and Nd substituents on high-power piezoelectric properties of PMS–PZT ceramics. Ceram. Int., 34, 2067(2008). https://doi.org/10.1016/j.ceramint.2007.08.008

    [11] Y. Gao, K. Uchino, D. Viehland. Time dependence of the mechanical quality factor in “hard” lead zirconate titanate ceramics: Development of an internal dipolar field and high power origin. Jpn. J. Appl. Phys., 45, 9119(2006). https://doi.org/10.1143/JJAP.45.9119

    [12] J. Ryu, H. W. Kim, K. Uchino, J. Lee. Effect of Yb addition on the sintering behavior and high power piezoelectric properties of Pb(Zr,Ti)O3–Pb(Mn,Nb)O3. Jpn. J. Appl. Phys., 42, 1307(2003). https://doi.org/10.1143/JJAP.42.1307

    [13] Y. Luo, T. Pu, S. Fan, H. Liu, J. Zhu. Enhanced piezoelectric properties in low-temperature sintering PZN–PZT ceramics by adjusting Zr/Ti ratio. J. Adv. Dielect., 12, 2250001(2022). https://doi.org/10.1142/S2010135X22500011

    [14] J. Du, J. Qiu, K. Zhu. Effects of Fe2O3 doping on the microstructure and piezoelectric properties of 0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)O3 ceramics. Mater. Lett., 66, 153(2012). https://doi.org/10.1016/j.matlet.2011.08.038

    [15] M. Valant, D. Suvorov, R. C. Pullar, K. Sarma, N. M. Alford. A mechanism for low-temperature sintering. J. Eur. Ceram. Soc., 26, 2777(2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.026

    [16] J. Yoo, Y. Kim, H. Cho, Y.-H. Jeong. High piezoelectric d31 coefficient and high Tc in PMW–PNN–PZT ceramics sintered at low temperature. Sens. Actuators A-Phys., 255, 160(2017). https://doi.org/10.1016/j.sna.2016.12.020

    [17] D. Wei, H. Wang. Low-temperature sintering and enhanced piezoelectric properties of random and textured PIN–PMN–PT ceramics with Li2CO3. J. Am. Ceram. Soc., 100, 1073(2017). https://doi.org/10.1111/jace.14657

    [18] M. P. Zheng, Y. D. Hou, F. Y. Xie, J. Chen, M. K. Zhu, H. Yan. Effect of valence state and incorporation site of cobalt dopants on the microstructure and electrical properties of 0.2PZN–0.8PZT ceramics. Acta Mater., 61, 1489(2013). https://doi.org/10.1016/j.actamat.2012.11.026

    [19] C. C. Tsai, S. Y. Chu, J. S. Jiang, C. S. Hong, Y. F. Chiu. The phase structure, electrical properties, and correlated characterizations of (Mn,Sb) co-tuned PZMnNS-PZT ceramics with relaxation behavior near the morphotropic phase boundary. Ceram. Int., 40, 11713(2014). https://doi.org/10.1016/j.ceramint.2014.03.185

    [20] Y. Yue, Q. Zhang, R. Nie, H. Liu, Q. Chen, P. Yu, J. Zhu, D. Xiao. Influence of sintering temperature on phase structure and electrical properties of 0.55Pb(Ni1∕3Nb2∕3)O3–0.45Pb(Zr0.3Ti0.7)O3 ceramics. Mater. Res. Bull., 92, 123(2017). https://doi.org/10.1016/j.materresbull.2017.04.015

    [21] H. Liu, R. Nie, Y. Yue, Q. Zhang, Q. Chen, J. Zhu, P. Yu, D. Xiao, C. Wang, X. Wang. Effect of MnO2 doping on piezoelectric, dielectric and ferroelectric properties of PNN–PZT ceramics. Ceram. Int., 41, 11359(2015). https://doi.org/10.1016/j.ceramint.2015.05.094

    [22] M. Promsawat, A. Watcharapasom, Z. G. Ye, S. Jiansirisomboon. Enhanced dielectric and ferroelectric properties of Pb(Mg1/3Nb2/3)0.65Ti0.35O3 ceramics by ZnO modification. J. Am. Ceram. Soc., 98, 848(2015). https://doi.org/10.1111/jace.13372

    [23] Y. D. Hou, L. M. Chang, M. K. Zhu, X. M. Song, H. Yan. Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the low temperature sintered 0.5PZN-0.5PZT systems. J. Appl. Phys., 102, 084507(2007). https://doi.org/10.1063/1.2800264

    [24] S. Yoon, A. Joshi, K. Uchino. Effect of additives on the electromechanical properties of Pb(Zr,Ti)O3–Pb(Y2/3W1/3)O3 ceramics. J. Am. Ceram. Soc., 80, 1035(1997). https://doi.org/10.1111/j.1151-2916.1997.tb02942.x

    [25] C. Tsai, S. Chu, C. Hong, S. Chen. Effects of ZnO on the dielectric, conductive and piezoelectric properties of low-temperature-sintered PMnN-PZT based hard piezoelectric ceramics. J. Eur. Ceram. Soc., 31, 2013(2011). https://doi.org/10.1016/j.jeurceramsoc.2011.04.022

    [26] Y. Yan, L. D. Geng, L. F. Zhu, H. Leng, X. Li, H. Liu, D. Lin, K. Wang, Y. U. Wang, S. Priya. Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering. Adv. Sci., 9, 2105715(2022). https://doi.org/10.1002/advs.202105715

    [27] Q. Wang, R. Li, H. Xue, X. Sun, L. Jiang, J. Wu. A compounding strategy to boost the transduction coefficient in KNN-based piezoelectric composite ceramics for ultrasonic energy harvesting. J. Mater. Chem. A, 11, 1684(2023). https://doi.org/10.1039/D2TA09005H

    [28] R. A. Islam, S. Priya. Realization of high-energy density polycrystalline piezoelectric ceramics. Appl. Phys. Lett., 88, 032903(2006). https://doi.org/10.1063/1.2166201

    [29] Y. J. Kim, J. Yoo, J. Y. Lee. Piezoelectric properties of PCW–PNN–PZT ceramics sintered at low temperature. Ferroelectrics Lett., 44, 1(2017). https://doi.org/10.1080/07315171.2017.1319748

    [30] X. Gao, J. Wu, Y. Yu, S. Dong. A modified barbell-shaped PNN–PZT–PIN piezoelectric ceramic energy harvester. Appl. Phys. Lett., 111, 212904(2017). https://doi.org/10.1063/1.5001803

    [31] W. T. Chen, A. E. Gurdal, S. Tuncdemir, J. Gambal, X. M. Chen, C. A. Randall. Introducing an extremely high output power and high temperature piezoelectric bimorph energy harvester technology based on the ferroelectric system Bi(Me)O3–PbTiO3. J. Appl. Phys., 128, 144102(2020). https://doi.org/10.1063/5.0005789

    [32] G. S. Kino. Acoustic Waves: Devices, Imaging, and Analog Signal Processing(1987).

    [33] M. J. Zipparo, K. K. Shung, T. R. Shrout. Piezoceramics for high-frequency (20 to 100MHz) single-element imaging transducers. IEEE T. Ultrason. Ferr., 44, 1038(1997). https://doi.org/10.1109/58.655629

    [34] D. Wang, M. Cao, S. Zhang. Investigation of ternary system PbHfO3–PbTiO3–Pb(Mg1∕3Nb2∕3)O3 with morphotropic phase boundary compositions. J. Am. Ceram. Soc., 95, 3220(2012). https://doi.org/10.1111/j.1551-2916.2012.05300.x

    [35] G. H. Haertling. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc., 82, 797(1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x

    [36] J. B. Lim, S. Zhang, T. R. Shrout. Relaxor behavior of piezoelectric Pb(Yb1∕2Nb1∕2)O3–PbTiO3 ceramics sintered at low temperature. J. Electroceram., 26, 68(2011). https://doi.org/10.1007/s10832-011-9629-8

    Wanfeng Zhuang, Weiling Wang, Yaxia Luo, Hong Liu, Jianguo Zhu. Enhanced piezoelectric properties in low-temperature sintered Pb(Zr,Ti)O3-based ceramics via Yb2O3 doping[J]. Journal of Advanced Dielectrics, 2024, 14(4): 2340008
    Download Citation