• Laser & Optoelectronics Progress
  • Vol. 60, Issue 18, 1811003 (2023)
Cheng Xu1, Xinyang Han1, Zhenyang Luo1, Tiefeng Yang1..., Depeng Kong2, Lijun Chen3, Dai Wu3, Peng Li3, Limin Xu4, Heng Wu4, Huihui Lu1, Zhe Chen5,** and Heyuan Guan1,*|Show fewer author(s)
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Jinan University, Guangzhou 510632, Guangdong , China
  • 2Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi , China
  • 3Institute of Applied Electronics, CAEP, Mianyang 621900, Sichuan , China
  • 4Guangdong Provincial Key Laboratory of Cyber-Physical System, Guangdong University of Technology, Guangzhou 510006, Guangdong , China
  • 5Jihua Laboratory, Foshan 528200, Guangdong , China
  • show less
    DOI: 10.3788/LOP231416 Cite this Article Set citation alerts
    Cheng Xu, Xinyang Han, Zhenyang Luo, Tiefeng Yang, Depeng Kong, Lijun Chen, Dai Wu, Peng Li, Limin Xu, Heng Wu, Huihui Lu, Zhe Chen, Heyuan Guan. Novel Optically Controlled GaAs/Side-Polished Terahertz Fiber Modulator[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811003 Copy Citation Text show less
    References

    [1] Siegel P H. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory and Techniques, 52, 2438-2447(2004).

    [2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [3] Kim D K, Citrin D S. Frequency and amplitude modulation in terahertz-sideband generation in quantum wells[J]. Applied Physics Letters, 94, 021105(2009).

    [4] Li J S. Terahertz modulator using photonic crystals[J]. Optics Communications, 269, 98-101(2007).

    [5] Paul O, Imhof C, Lägel B et al. Polarization-independent active metamaterial for high-frequency terahertz modulation[J]. Optics Express, 17, 819-827(2009).

    [6] Aksu S, Huang M, Artar A et al. Flexible plasmonics on unconventional and nonplanar substrates[J]. Advanced Materials, 23, 4422-4430(2011).

    [7] Chen X Y, Ghosh S, Xu Q et al. Active control of polarization-dependent near-field coupling in hybrid metasurfaces[J]. Applied Physics Letters, 113, 061111(2018).

    [8] Zhou W, Chen H M, Ji K et al. Vertically magnetic-controlled THz modulator based on 2-D magnetized plasma photonic crystal[J]. Photonics and Nanostructures-Fundamentals and Applications, 23, 28-35(2017).

    [9] Prabhu S S, Ralph S E, Melloch M R et al. Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy[J]. Applied Physics Letters, 70, 2419-2421(1997).

    [10] Ortigosa-Blanch A, Knight J C, Wadsworth W J et al. Highly birefringent photonic crystal fibers[J]. Optics Letters, 25, 1325-1327(2000).

    [11] Cregan R F, Mangan B J, Knight J C et al. Single-mode photonic band gap guidance of light in air[J]. Science, 285, 1537-1539(1999).

    [12] Mei S, Kong D P, Mu Q Y et al. A porous core Zeonex THz fiber with low loss and small dispersion[J]. Optical Fiber Technology, 69, 102834(2022).

    [13] Grischkowsky D, Keiding S, van Exter M et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors[J]. Journal of the Optical Society of America B, 7, 2006-2015(1990).

    [14] Zhong Y, Xie G X, Mao F et al. Thin-wall cyclic olefin copolymer tube waveguide for broadband terahertz transmission[J]. Optical Materials, 98, 109490(2019).

    [15] Hui Z Q, Yang X, Han D D et al. High birefringence hollow-core anti-resonant terahertz photonic crystal fiber with ultra-low loss[J]. Journal of Infrared and Millimeter Waves, 41, 563-572(2022).

    [16] Wang Z M, Qiao J, Zhao S Q et al. Recent progress in terahertz modulation using photonic structures based on two-dimensional materials[J]. InfoMat, 3, 1110-1133(2021).

    [17] Li D, Ji Z J, Luo C Y. Optically tunable plasmon-induced transparency in terahertz metamaterial system[J]. Optical Materials, 104, 109920(2020).

    [18] Wang H X, Ling F R, Luo C Y et al. A terahertz wave all-optical modulator based on quartz-based MAPbI3 thin film[J]. Optical Materials, 127, 112235(2022).

    [19] Shi Z W, Cao X X, Wen Q Y et al. Terahertz modulators based on silicon nanotip array[J]. Advanced Optical Materials, 6, 1700620(2018).

    [20] Li D, Luo C Y, Wang H X et al. Active control of plasmon-induced transparency based on a GaAs/Si heterojunction in the terahertz range[J]. Optical Materials, 121, 111609(2021).

    [21] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 21, 12507-12518(2013).

    [22] Bai Y, Chen K J, Liu H et al. Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect[J]. Optics Communications, 353, 83-89(2015).

    [23] Wen Q Y, Tian W, Mao Q et al. Graphene based all-optical spatial terahertz modulator[J]. Scientific Reports, 4, 7409(2014).

    [24] Cao Y P, Gan S, Geng Z X et al. Optically tuned terahertz modulator based on annealed multilayer MoS2[J]. Scientific Reports, 6, 22899(2016).

    [25] Fu Y, Tan Z, Wang C et al. Research on optical controlled terahertz modulator based on monolayer tungsten disulfide[J]. Journal of Infrared and Millimeter Waves, 38, 655-661(2019).

    [26] Alihosseini F, Heshmatpanah Z, Zandi H. Design of a highly efficient photoconductive terahertz modulator enhanced by photonic crystal resonant cavity[C], 36-38(2021).

    Cheng Xu, Xinyang Han, Zhenyang Luo, Tiefeng Yang, Depeng Kong, Lijun Chen, Dai Wu, Peng Li, Limin Xu, Heng Wu, Huihui Lu, Zhe Chen, Heyuan Guan. Novel Optically Controlled GaAs/Side-Polished Terahertz Fiber Modulator[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811003
    Download Citation