
- Chinese Optics Letters
- Vol. 17, Issue 10, 100401 (2019)
Abstract
Photodetectors (PDs) play an important role in the overall operation of any optical communication or trans-receiver system. A major requirement of a PD is high speed response in ever increasing data rates. So, the impulse response study of a PD is a necessity for overall system performance. The development and evolution of optical-fiber-based communication systems have increasing demands for integrated, high-response, broadband, and simplest structure/configuration-based PDs at the receiver end to receive the data, as well as at the transmitter end to check the health of the sources[
Chalcogenides having phase-change properties [also known as phase-change materials (PCM)], especially
The finite-difference time-domain (
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
Figure 1.Proposed design for the impulse response analysis of the GST-based PD device.
The boundary condition is set to the perfectly matched layer (PML) with a maximum layer of 64 to avoid any back scattering. The stability factor and sampling rate are set to
Figure 2.For the 150 nm thick
Total current (
Figure 3.Carrier current (
As the impulse response depends upon the dimensions, bias, and illumination condition, different simulations have been carried out by changing these parameters. Figure
Figure 4.
A comparison between
Figure 5.Total current (
A very important parameter for the communication application point of view is how the device is behaving at different wavelengths. Along with FWHM and responsivity, the BW can estimate the suitable application and viability of the device. If the BW changes its range by changing the material phase without any significant change in magnitude (responsivity), the device can be tuned for broadband applications. The impulse response of the
Figure 6.Impulse response of device illuminated at wavelengths of 1150 nm, 1550 nm, and 1850 nm for a 2 V biased 150 nm thick (a)
Also, in
Responsivity (A/W) | BW (GHz) | |||
---|---|---|---|---|
Wavelength (nm) | ||||
1150 | 2 | 25 | – | 75 |
1550 | 18.5 | 21 | 8 | 29 |
1850 | 18 | 4 | 1.5 | – |
Table 1. Responsivity and Bandwidth Comparison of aGST and cGST
In conclusion, a chalcogenide material (GST)-based silicon-on-insulator (SOI) waveguide-integrated PD is simulated for impulse response analysis. The two stable phases of GST, i.e.,
References
[1] S. Raoux, F. Xiong, M. Wuttig, E. Pop. MRS Bull., 39, 703(2014).
[2] D. Trommer, G. Unterbörsch, D. Schumann, O. Reimann, D. Huhse, D. Bimberg. Optical Fiber Communication Conference, WF7(2003).
[3] A. E. Willner, S. Khaleghi, M. R. Chitgarha, O. F. Yilmaz. J. Light. Technol., 32, 660(2014).
[4] K. Meyer, M. Pessot, G. Mourou, R. Grondin, S. Chamoun. Appl. Phys. Lett., 53, 2254(1988).
[5] G. M. Dunn, A. B. Walker, A. J. Vickers, V. R. Wicks. J. Appl. Phys., 79, 7329(1996).
[6] D. Kuhl, F. Hieronymi, E. H. Bottcher, D. Bimberg, J. Kuhl, M. Klingenstein. J. Light. Technol., 10, 753(1992).
[7] S. E. J. Mahabadi, C. R. Menyuk. Frontiers in Optics(2017).
[8] M. Wuttig, H. Bhaskaran, T. Taubner. Nat. Photon., 11, 8(2017).
[9] T. A. Miller, M. Rudé, V. Pruneri, S. Wall. Phys. Rev. B, 94, 024301(2016).
[11] H. Liang, R. Soref, J. Mu, A. Majumdar, X. Li, W. P. Huang. J. Light. Technol., 33, 1805(2015).
[12] Y. Huang, Y. Shen, C. Min, G. Veronis. Opt. Mat. Express, 8, 1672(2018).
[13] W. Zheng, T. Xie, Y. Zhou, Y. L. Chen, W. Jiang, S. Zhao, J. Xu, Y. Jing, Y. Wu, G. Chen, Y. Guo, J. Yin, S. Huang, H. Q. Xu, Z. Liu, H. Peng. Nat. Commun., 6, 6972(2015).
[14] V. Srivastava, M. Tolani, Sunny, R. Kumar. IEEE Sens. J., 18, 540(2018).
[15] V. Srivastava, M. Tolani, Sunny. Superlatt. Microsctruct., 130, 1(2019).
[16] J. Yin, Z. Tan, H. Hong, J. Wu, H. Yuan, Y. Liu, C. Chen, C. Tan, F. Yao, T. Li, Y. Chen, Z. Liu, K. Liu, H. Peng. Nat. Commun., 9, 3311(2018).
[17] S. L. Chuang. Physics of Photonic Devices(2009).
[18] B. G. Streetman, S. Banerjee. Solid State Electronic Devices(2009).
[19] K. S. Yee. IEEE Trans. Antennas Propaga., 14, 302(1966).
[21] A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, R. Bez. IEEE Trans. Electron. Devices, 51, 452(2004).
[22] A. V. Kolobov, J. Tominaga. Chalcogenides, 164, 3(2012).

Set citation alerts for the article
Please enter your email address