[1] G. A. Mourou, T. Tajima, S. V. Bulanov. Optics in the relativistic regime. Rev. Mod. Phys., 78, 309(2006).
[2] F. Krausz, M. Ivanov. Attosecond physics. Rev. Mod. Phys., 81, 163(2009).
[3] N. M. Naumova et al. Relativistic generation of isolated attosecond pulses in a λ3 focal volume. Phys. Rev. Lett., 92, 063902(2004).
[4] A. Baltuška, T. Fuji, T. Kobayashi. Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. Opt. Lett., 27, 306-308(2002).
[5] T. Deckert, A. Vanderhaegen, D. Brida. Sub-8-fs pulses in the visible to near-infrared by a degenerate optical parametric amplifier. Opt. Lett., 48, 4496-4499(2023).
[6] A. Harth et al. Two-color pumped OPCPA system emitting spectra spanning 1.5 octaves from VIS to NIR. Opt. Express, 20, 3076-3081(2012).
[7] G. M. Rossi et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science. Nat. Photonics, 14, 629-635(2020).
[8] S. Tóth et al. Single thin-plate compression of multi-TW laser pulses to 3.9 fs. Opt. Lett., 48, 57-60(2023).
[9] A.-L. Viotti et al. Multi-pass cells for post-compression of ultrashort laser pulses. Optica, 9, 197-216(2022).
[10] M. Ouillé et al. Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate. Light Sci. Appl., 9, 47(2020).
[11] R. Piccoli et al. Intense few-cycle visible pulses directly generated via nonlinear fibre mode mixing. Nat. Photonics, 15, 884-889(2021).
[12] Q. Zhang et al. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses. Opt. Express, 19, 7190-7212(2011).
[13] Z. Li, Y. Kato, J. Kawanaka. Simulating an ultra-broadband concept for Exawatt-class lasers. Sci. Rep., 11, 151(2021).
[14] Z. Li, Y. Leng, R. Li. Further development of the short-pulse Petawatt laser: trends, technologies, and bottlenecks. Laser Photonics Rev., 17, 2100705(2023).
[15] Y. Han et al. 400 nm ultra-broadband gratings for near-single-cycle 100 Petawatt lasers. Nat. Commun., 14, 3632(2023).
[16] J. W. Yoon et al. Realization of laser intensity over 1023 W/cm2. Optica, 8, 630-635(2021).
[17] M. Nakatsutsumi et al. Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity. Opt. Lett., 35, 2314-2316(2010).
[18] A. Kon et al. Geometrical optimization of an ellipsoidal plasma mirror toward tight focusing of ultra-intense laser pulse. J. Phys.: Conf. Ser., 244, 032008(2010).
[19] Y. Wu, L. Ji, R. Li. On the upper limit of laser intensity attainable in nonideal vacuum. Photonics Res., 9, 541-547(2021).
[20] W. Li et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett., 43, 5681-5684(2018).
[21] F. Lureau et al. High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability. High Power Laser Sci. Eng., 8, e43(2020).
[22] Y. Liu et al. Coherently tiled Ti:sapphire laser amplification: a way to break the 10 petawatt limit on current ultraintense lasers. Adv. Photonics Nexus, 2, 066009(2023).
[23] W. Wang, A. T. Friberg, E. Wolf. Structure of focused fields in systems with large Fresnel numbers. J. Opt. Soc. Am. A, 12, 1947-1953(1995).
[24] J. I. Kim et al. Wavefront-corrected post-compression of a 100-TW Ti:sapphire laser. Opt. Express, 30, 26212-26219(2022).
[25] V. V. Samarkin et al. Large-aperture adaptive optical system for correcting wavefront distortions of a petawatt Ti:sapphire laser beam. Quantum Electron., 52, 187-194(2022).
[26] B. Sun, P. S. Salter, M. J. Booth. Pulse front adaptive optics: a new method for control of ultrashort laser pulses. Opt. Express, 23, 19348-19357(2015).
[27] Z. Li et al. Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings. Appl. Phys. Express, 10, 102702(2017).
[28] A. Borot, F. Quéré. Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach. Opt. Express, 26, 26444-26461(2018).
[29] Z. Li, J. Kawanaka. Complex spatiotemporal coupling distortion pre-compensation with double-compressors for an ultra-intense femtosecond laser. Opt. Express, 27, 25172-25186(2019).
[30] A. Jeandet et al. Survey of spatio-temporal couplings throughout high-power ultrashort lasers. Opt. Express, 30, 3262-3288(2022).
[31] P. Varga, P. Török. Focusing of electromagnetic waves by paraboloid mirrors. II. Numerical results. J. Opt. Soc. Am. A, 17, 2090-2095(2000).
[32] T. M. Jeong et al. Spatio-temporal modification of femtosecond focal spot under tight focusing condition. Opt. Express, 23, 11641-11656(2015).
[33] X. Zeng, X. Chen. Characterization of tightly focused vector fields formed by off-axis parabolic mirror. Opt. Express, 27, 1179-1198(2019).
[34] J. A. Stratton, L. J. Chu. Diffraction theory of electromagnetic waves. Phys. Rev., 56, 99-107(1939).
[35] P. Varga, P. Török. Focusing of electromagnetic waves by paraboloid mirrors. I. Theory. J. Opt. Soc. Am. A, 17, 2081-2089(2000).
[36] S. Vallières et al. Tight-focusing parabolic reflector schemes for petawatt lasers. Opt. Express, 31, 19319-19335(2023).
微信里点“发现”,扫一下
二维码便可将本文分享至朋友圈。
Set citation alerts for the article
Please enter your email address
CancelConfirm