• Journal of Inorganic Materials
  • Vol. 37, Issue 9, 933 (2022)
Jiajun HU, Kai WANG, Xinguang HOU, Ting YANG, and Hongyan XIA*
Author Affiliations
  • State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    DOI: 10.15541/jim20210721 Cite this Article
    Jiajun HU, Kai WANG, Xinguang HOU, Ting YANG, Hongyan XIA. Boron Phosphide with High Thermal Conductivity: Synthesis by Molten Salt Method and Thermal Management Performance[J]. Journal of Inorganic Materials, 2022, 37(9): 933 Copy Citation Text show less
    References

    [1] H F SONG, J M LIU, B L LIU et al. Two dimensional materials for thermal management applications. Joule, 442-463(2018).

    [2] A L MOORE, L SHI. Emerging challenges and materials for thermal management of electronics. Mater. Today, 163-174(2014).

    [3] R C ZHANG, Z H HUANG, D SUN et al. New insights into thermal conductivity of uniaxially stretched high density polyethylene films. Polymer, 42-47(2018).

    [4] H Y CHEN, V V GINZBURG, J YANG et al. Thermal conductivity of polymerbased composites: fundamentals and applications. Prog. Polym. Sci., 41-85(2016).

    [5] Z BO, C Y YING, H R ZHU et al. Bifunctional sandwich structure of vertically-oriented graphenes and boron nitride nanosheets for thermal management of LEDs and Li-ion battery. Appl. Therm. Eng., 1016-1027(2019).

    [6] X WANG, P WU. Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets. ACS Appl. Mater. Interfaces, 19934-19944(2017).

    [7] H SHEN, J GUO, H WANG, N ZHAO et al. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl. Mater. Interfaces, 5701-5708(2015).

    [8] X HUANG, C ZHI, P JIANG et al. Polyhedral oligosilsesquioxane- modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv. Funct. Mater., 1824-1831(2013).

    [9] J HU, Y HUANG, Y YAO et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces, 13544-13553(2017).

    [10] G PAN, Y YAO, X ZENG et al. Learning from natural nacre: constructing layered polymer composites with high thermal conductivity. ACS Appl. Mater. Interfaces, 33001-33010(2017).

    [11] R SUN, H YAO, H B ZHANG et al. Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites. Compos. Sci. Technol., 16-23(2016).

    [12] Y M YAO, X D ZHU, X L ZENG et al. Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl. Mater. Interfaces, 9669-9678(2018).

    [13] Y HUANG, J T HU, Y M YAO et al. Manipulating orientation of silicon carbide nanowire in polymer composites to achieve high thermal conductivity. Adv. Mater. Interfaces, 1700446(2017).

    [14] S Z YU, P HING, X HU. Thermal conductivity of polystyrene- aluminum nitride composite. Compos. Part A-Appl. S., 289-292(2002).

    [15] Y ZHOU, Y YAO, C Y CHEN et al. The use of polyimidemodified aluminum nitride fillers in AlN@PI/epoxy composites with enhanced thermal conductivity for electronic encapsulation. Sci. Rep.(2014).

    [16] X W WANG, P Y WU. Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading. Chem. Eng. J., 723-731(2018).

    [17] X HOU, Y P CHEN, L LV et al. High-thermal-transport-channel construction within flexible composites via the welding of boron nitride nanosheets. ACS Appl. Nano Mater., 360-368(2019).

    [18] J YANG, L S TANG, R Y BAO et al. Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets. Chem. Eng. J., 481-490(2017).

    [19] T ZHI, T TAO, B LIU et al. High quality CVD single crystal diamonds grown on nanorods patterned diamond seed. Diam. Relat. Mater.(2021).

    [20] V L SOLOZHENKO, V BUSHLYA, J M ZHOU. Mechanical properties of ultra-hard nanocrystalline cubic boron nitride. J. Appl. Phys.(2019).

    [21] Q Y ZHENG, S LI, C H LI et al. High thermal conductivity in isotopically enriched cubic boron phosphide. Adv. Funct. Mater., 1805116(2018).

    [22] V L SOLOZHENKO, V BUSHLYA. Mechanical properties of boron phosphides. J. Suprerhard Mater., 84-89(2019).

    [23] N DING, J Q XU, Q ZHANG et al. Controllable carrier type in boron phosphide nanowires toward homostructural optoelectronic devices. ACS Appl. Mater. Interfaces, 10296-10303(2018).

    [24] V A MUKHANOV, D VREL, P S SOKOLOV et al. Ultra-fast mechanochemical synthesis of boron phosphides, BP and B12P2. Dalton Trans., 10122-10126(2016).

    [25] X FENG, L Y SHI, J Z HANG et al. Low temperature synthesis of boron phosphide nanocrystals. Mater. Lett., 865-867(2005).

    [26] J S KANG, H WU, Y J HU. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications. Nano Lett., 7507-7514(2017).

    [27] H SUGIMOTO, M FUJII, K IMAKITA. Size-controlled growth of cubic boron phosphide nanocrystals. RSC Adv., 8427-8431(2015).

    [28] X ZHANG, X C XIA, H YOU et al. Design of continuous segregated polypropylene/Al2O3 nanocomposites and impact of controlled Al2O3 distribution on thermal conductivity. Compos. Part A-Appl. S.(2020).

    [29] Y OUYANG, X F LI, F DING et al. Simultaneously enhance thermal conductive property and mechanical properties of silicon rubber composites by introducing ultrafine Al2O3 nanospheres prepared via thermal plasma. Compos. Sci. Technol.(2020).

    [30] C PAN, K C KOU, Y ZHANG et al. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. Part B-Eng., 1-8(2018).

    [31] S W GUAN, Z R SU, F CHEN et al. Spherical hybrid filler BN@Al2O3via chemical adhesive for enhancing thermal conductivity and processability of silicon rubber. J. Appl. Polym. Sci., 51211(2021).

    [32] Z D WANG, G D MENG, L L WANG et al. Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci. Rep.(2021).

    [33] G YıIDıZ, M AKKOYUN. Thermal and electrical properties of aluminum nitride/boron nitride filled polyamide 6 hybrid polymer composites. J. Appl. Polym. Sci., e50516(2021).

    [34] Q G WEI, D YANG, L Y YU et al. Fabrication of carboxyl nitrile butadiene rubber composites with high dielectric constant and thermal conductivity using Al2O3@PCPA@GO hybrids. Compos. Sci. Technol.(2020).

    [35] D YANG, Y F NI, X X KONG et al. Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric constant. Compos. Sci. Technol., 18-25(2019).

    [36] J W REN, Q H LI, L YAN et al. Enhanced thermal conductivity of epoxy composites by introducing graphene@boron nitride nanosheets hybrid nanoparticles. Mater. Design(2020).

    [37] H T WANG, D L DING, Q LIU et al. Highly anisotropic thermally conductive polyimide composites via the alignment of boron nitride platelets. Compos. Part B-Eng., 311-318(2019).

    Jiajun HU, Kai WANG, Xinguang HOU, Ting YANG, Hongyan XIA. Boron Phosphide with High Thermal Conductivity: Synthesis by Molten Salt Method and Thermal Management Performance[J]. Journal of Inorganic Materials, 2022, 37(9): 933
    Download Citation