• Chinese Optics Letters
  • Vol. 15, Issue 2, 021301 (2017)
Mansour Bacha1,2,* and Abderrahmane Belghoraf1
Author Affiliations
  • 1Electronics Department, University of Sciences and Technology of Oran Mohamed Boudiaf, Oran M’Naouer BP 1505, Algeria
  • 2Centre of Satellites Development, Ibn Rochd USTO Oran BP 4065, Algeria
  • show less
    DOI: 10.3788/COL201715.021301 Cite this Article Set citation alerts
    Mansour Bacha, Abderrahmane Belghoraf, "Numerical evaluation of radiation and optical coupling occurring in optical coupler," Chin. Opt. Lett. 15, 021301 (2017) Copy Citation Text show less

    Abstract

    We present in this work a new mathematical model to analyze and evaluate optical phenomena occurring in the nonuniform optical waveguide used in integrated optics as an optical coupler. By introducing some modifications to the intrinsic integral, we perfectly assess the radiation field present in the adjacent medium of the waveguide and, thus, follow the evolution of the optical coupling from the taper thin film to the substrate and cladding until there is a total energy transfer. The new model that is introduced can be used to evaluate electromagnetic field distribution in three mediums that constitute any nonuniform optical couplers presenting great or low wedge angles.
    ϕ+(θ+)=2arctan(ng2·cos2(θ+)nc,s2ng2ng2·cos2(θ+)).(1)

    View in Article

    Φe+(θ0,θn)=m=1n[ϕ+(θm+)]+m=1n[ϕ(θm)],(2)

    View in Article

    Φo+(θ0,θn)=Φe+(θ0,θn)ϕ(θn),(3)

    View in Article

    Φe(θ0,θn)=m=1n[ϕ(θm)]+m=1n[ϕ+(θm+)],(4)

    View in Article

    Φo(θ0,θn)=Φe(θ0,θn)ϕ+(θn+),(5)

    View in Article

    θm+=θ0++2·a·(m1).(6)

    View in Article

    m=1+θm+θ0+2·a.(7)

    View in Article

    ϕe+(θ0,θn)=12ϕ+(θ0+)+12ϕ+(θn+)+12·aθ0θϕ+(θ)·dθ+12ϕ(θ0)+12ϕ(θn)+12·aθ0θϕ(θ)·dθ+Ee+(θn+,ϕ+(θn+))+Ee+(θn,ϕ(θn)),(8)

    View in Article

    ϕo+(θ0,θn)=12ϕ+(θ0+)+12ϕ+(θn+)+12·aθ0θϕ+(θ)·dθ+12ϕ(θ0)12ϕ(θn)+12·aθ0θϕ(θ)·dθ+Ee+(θn+,ϕ+(θn+))+Ee+(θn,ϕ(θn)),(9)

    View in Article

    ϕe(θ0,θn)=12ϕ(θ0)+12ϕ(θn)+12·aθ0θϕ(θ)·dθ+12ϕ+(θ0+)+12ϕ+(θn+)+12·aθ0θϕ+(θ)·dθ+Ee(θn,ϕ(θn))+Ee(θn+,ϕ+(θn+)),(10)

    View in Article

    ϕo(θ0,θn)=12ϕ(θ0)+12ϕ(θn)+12·aθ0θϕ(θ)·dθ+12ϕ+(θ0+)12ϕ+(θn+)+12·aθ0θϕ+(θ)·dθ+Ee(θn,ϕ(θn))+Ee(θn+,ϕ+(θn+)).(11)

    View in Article

    E(θ,ϕ±(θ))=2·q=+{12·aθ0θϕ±(θ)·cos[2·π·p·(1+θθ02a)]dθ}.(12)

    View in Article

    We+(X0,X)=We+(θ0,θ)=Exp{j·[ϕe+(θ0,θ)+k·Re+(θ0,θ)]},(13)

    View in Article

    Wo+(X0,X)=Wo+(θ0,θ)=Exp{j·[ϕo+(θ0,θ)+k·Ro+(θ0,θ)]},(14)

    View in Article

    We(X0,X)=We(θ0,θ)=Exp{j·[ϕe(θ0,θ)+k·Re(θ0,θ)]},(15)

    View in Article

    Wo(X0,X)=Wo(θ0,θ)=Exp{j·[ϕo(θ0,θ)+k·Ro(θ0,θ)]}.(16)

    View in Article

    Rp+(θ0,θm)=r0·cos(θ0ax0)r·cos(θ+ax),(17)

    View in Article

    Ri+(θ0,θm)=r0·cos(θ0ax0)r·cos(θa+x),(18)

    View in Article

    Rp(θ0,θm)=r0·cos(θ0a+x0)r·cos(θa+x),(19)

    View in Article

    Ri(θ0,θm)=r0·cos(θ0a+x0)r·cos(θ+ax).(20)

    View in Article

    W(θ0,θ)=12acq=+{[We+(θ0,θ)+Wo+(θ0,θ)+We(θ0,θ)+Wo(θ0,θ)]·Exp(j·2π·q·m)}dθ.(21)

    View in Article

    W+(X,θ)=12ac{[We+(X,θ)+Wo+(X,θ)]·Exp(j·2π·q·m)}dθ,(22)

    View in Article

    W(X,θ)=12ac{[We(X,θ)+Wo(X,θ)]·Exp(j·2π·q·m)}dθ.(23)

    View in Article

    Ws(X,θ)=12acq=+{[1+Exp(j·ϕ)]·Wo+(X,θ)Exp(j·2π·q·m)}dθ,(24)

    View in Article

    Ws(X,θ)=12acq=+{[1+Exp(j·ϕ+)]·Wo(X,θ)Exp(j·2π·q·m)}dθ.(25)

    View in Article