[1] C. Zhang, F. Wang, J. Han, S. Bai, J. Tan et al., Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries. Small Struct. 2, 2170015 (2021).
[2] F. Dou, L. Shi, G. Chen, D. Zhang, Silicon/carbon composite anode materials for lithium-ion batteries. Electrochem. Energy Rev. 2, 149–198 (2019).
[3] W. Tao, P. Wang, Y. You, K. Park, C.-Y. Wang et al., Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Res. 12, 1739–1749 (2019).
[4] J. Wang, W. Huang, Y.S. Kim, Y.K. Jeong, S.C. Kim et al., Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res. 13, 1558–1563 (2020).
[5] Y.-X. Yao, C. Yan, Q. Zhang, Emerging interfacial chemistry of graphite anodes in lithium-ion batteries. Chem. Commun. 56, 14570–14584 (2020).
[6] L. Kraft, J.B. Habedank, A. Frank, A. Rheinfeld, A. Jossen, Modeling and simulation of pore morphology modifications using laser-structured graphite anodes in lithium-ion batteries. J. Electrochem. Soc. 167, 013506 (2019).
[7] X. Gao, W. Lu, J. Xu, Insights into the Li diffusion mechanism in Si/C composite anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 21362–21370 (2021).
[8] K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao et al., Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14, 1702737 (2018).
[9] T.-F. Yi, Y.-R. Zhu, W. Tao, S. Luo, Y. Xie et al., Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J. Power. Sources 399, 26–41 (2018).
[10] Z. Chen, Y. Cao, J. Qian, X. Ai, H. Yang, Pb-sandwiched nanoparticles as anode material for lithium-ion batteries. J. Solid State Electrochem. 16, 291–295 (2012).
[11] Q. Li, C. Xu, L. Yang, K. Pei, Y. Zhao et al., Pb/C composite with spherical Pb nanoparticles encapsulated in carbon microspheres as a high-performance anode for lithium-ion batteries. ACS Appl. Energy Mater. 3, 7416–7426 (2020).
[12] Y. Chen, J. Li, G. Yue, X. Luo, Novel Ag@Nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries. Nano-Micro Lett. 9, 32 (2017).
[13] X. Liu, X.-Y. Wu, B. Chang, K.-X. Wang, Recent progress on germanium-based anodes for lithium ion batteries: efficient lithiation strategies and mechanisms. Energy Storage Mater. 30, 146–169 (2020).
[14] A. Casimir, H. Zhang, O. Ogoke, J.C. Amine, J. Lu et al., Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation. Nano Energy 27, 359–376 (2016).
[15] H. Tian, X. Tan, F. Xin, C. Wang, W. Han, Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy 11, 490–499 (2015).
[16] M. Salah, P. Murphy, C. Hall, C. Francis, R. Kerr et al., Pure silicon thin-film anodes for lithium-ion batteries: a review. J. Power. Sources 414, 48–67 (2019).
[17] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008).
[18] J. Wang, L. Liao, Y. Li, J. Zhao, F. Shi et al., Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett. 18, 7060–7065 (2018).
[19] Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 7, 1700715 (2017).
[20] P. Sehrawat, A. Shabir, C.M. Julien, S.S. Islam, Recent trends in silicon/graphene nanocomposite anodes for lithium-ion batteries. J. Power. Sources 501, 229709 (2021).
[21] F. Zhang, G. Zhu, K. Wang, X. Qian, Y. Zhao et al., Boosting the initial coulombic efficiency in silicon anodes through interfacial incorporation of metal nanocrystals. J. Mater. Chem. A 7, 17426–17434 (2019).
[22] Z. Bitew, M. Tesemma, Y. Beyene, M. Amare, Nano-structured silicon and silicon based composites as anode materials for lithium ion batteries: recent progress and perspectives. Sustain. Energy Fuels 6, 1014–1050 (2022).
[23] M.A. Rahman, G. Song, A.I. Bhatt, Y.C. Wong, C. Wen, Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 26, 647–678 (2016).
[24] C. Zhu, K. Han, D. Geng, H. Ye, X. Meng, Achieving high-performance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings: an overview. Electrochim. Acta 251, 710–728 (2017).
[25] D. Uxa, B. Jerliu, E. Hüger, L. Dörrer, M. Horisberger et al., On the lithiation mechanism of amorphous silicon electrodes in Li-ion batteries. J. Phys. Chem. C 123, 22027–22039 (2019).
[26] S. Zhang, Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries. npj Comput. Mater. 3, 7 (2017).
[27] X. Chen, H. Li, Z. Yan, F. Cheng, J. Chen, Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Sci. China Mater. 62, 1515–1536 (2019).
[28] S. Misra, N. Liu, J. Nelson, S.S. Hong, Y. Cui et al., In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. ACS Nano 6, 5465–5473 (2012).
[29] Z. Zhang, N. Liao, H. Zhou, W. Xue, Insight into silicon-carbon multilayer films as anode materials for lithium-ion batteries: a combined experimental and first principles study. Acta Mater. 178, 173–178 (2019).
[30] Y. Zhang, N. Du, D. Yang, Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries. Nanoscale 11, 19086–19104 (2019).
[31] R.E. Ruther, K.A. Hays, S.J. An, J. Li, D.L. Wood et al., Chemical evolution in silicon-graphite composite anodes investigated by vibrational spectroscopy. ACS Appl. Mater. Interfaces 10, 18641–18649 (2018).
[32] F. Shi, Z. Song, P.N. Ross, G.A. Somorjai, R.O. Ritchie et al., Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nat. Commun. 7, 11886 (2016).
[33] F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong et al., Review—nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries. J. Electrochem. Soc. 162, A2509–A2528 (2015).
[34] Q. Shi, J. Zhou, S. Ullah, X. Yang, K. Tokarska et al., A review of recent developments in Si/C composite materials for Li-ion batteries. Energy Storage Mater. 34, 735–754 (2021).
[35] S. You, H. Tan, L. Wei, W. Tan, C. Chao, Li Design strategies of Si/C composite anode for lithium-ion batteries. Chemistry 27, 12237–12256 (2021).
[36] C.-C. Hsieh, Y.-G. Lin, C.-L. Chiang, W.-R. Liu, Carbon-coated porous Si/C composite anode materials via two-step etching/coating processes for lithium-ion batteries. Ceram. Int. 46, 26598–26607 (2020).
[37] X. Gao, W. Lu, J. Xu, Unlocking multiphysics design guidelines on Si/C composite nanostructures for high-energy-density and robust lithium-ion battery anode. Nano Energy 81, 105591 (2021).
[38] Y. Yan, J. Miao, Z. Yang, F.-X. Xiao, H.B. Yang et al., Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44, 3295–3346 (2015).
[39] W. Wang, P.N. Kumta, Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS Nano 4, 2233–2241 (2010).
[40] H. Zhang, X. Zhang, H. Jin, P. Zong, Y. Bai et al., A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes. Chem. Eng. J. 360, 974–981 (2019).
[41] J. Su, J. Zhao, L. Li, C. Zhang, C. Chen et al., Three-dimensional porous Si and SiO2 with in situ decorated carbon nanotubes As anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 9, 17807–17813 (2017).
[42] Y.-J. Qiao, H. Zhang, Y.-X. Hu, W.-P. Li, W.-J. Liu et al., A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries. Int. J. Miner. Metall. Mater. 28, 1611–1620 (2021).
[43] S. Cui, S. Chen, L. Deng, Si nanoparticles encapsulated in CNTs arrays with tubular sandwich structure for high performance Li ion battery. Ceram. Int. 46, 3242–3249 (2020).
[44] H. Lu, W. Chen, Q. Liu, C. Pang, L. Xue et al., Si/Cu3Si@C composite encapsulated in CNTs network as high performance anode for lithium ion batteries. J. Wuhan Univ. Technol. Mater. Sci. Ed. 34, 1055–1061 (2019).
[45] Y. Xu, Y. Zhu, F. Han, C. Luo, C. Wang, 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv. Energy Mater. 5, 1400753 (2015).
[46] R. Cong, J.-Y. Choi, J.-B. Song, M. Jo, H. Lee et al., Characteristics and electrochemical performances of silicon/carbon nanofiber/graphene composite films as anode materials for binder-free lithium-ion batteries. Sci. Rep. 11, 1283 (2021).
[47] A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009).
[48] A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007).
[49] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015).
[50] A. Jamaluddin, B. Umesh, F. Chen, J.-K. Chang, C.-Y. Su, Facile synthesis of core-shell structured Si@graphene balls as a high-performance anode for lithium-ion batteries. Nanoscale 12, 9616–9627 (2020).
[51] A. Jamaluddin, B. Umesh, K.-H. Tseng, C.-W. Huang, F. Chen et al., Control of graphene heteroatoms in a microball Si@Graphene composite anode for high-energy-density lithium-ion full cells. ACS Sustain. Chem. Eng. 8, 18936–18946 (2020).
[52] G. Lin, H. Wang, L. Zhang, Q. Cheng, Z. Gong et al., Graphene nanowalls conformally coated with amorphous/nanocrystalline Si as high-performance binder-free nanocomposite anode for lithium-ion batteries. J. Power. Sources 437, 226909 (2019).
[53] P. Zhang, Q. Zhu, Z. Guan, Q. Zhao, N. Sun et al., A flexible Si@C electrode with excellent stability employing an MXene as a multifunctional binder for lithium-ion batteries. ChemSusChem 13, 1621–1628 (2020).
[54] C.-H. Wang, N. Kurra, M. Alhabeb, J.-K. Chang, H.N. Alshareef et al., Titanium carbide (MXene) as a current collector for lithium-ion batteries. ACS Omega 3, 12489–12494 (2018).
[55] X. Zhu, J. Shen, X. Chen, Y. Li, W. Peng et al., Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries. Chem. Eng. J. 378, 122212 (2019).
[56] Y. Tian, Y. An, J. Feng, Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 11, 10004–10011 (2019).
[57] Y. Zhang, Z. Mu, J. Lai, Y. Chao, Y. Yang et al., MXene/Si@SiO x@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13, 2167–2175 (2019).
[58] X.-R. Wu, C.-H. Yu, C.-C. Li, Carbon-encapsulated gigaporous microsphere as potential Si anode-active material for lithium-ion batteries. Carbon 160, 255–264 (2020).
[59] C. Xiao, P. He, J. Ren, M. Yue, Y. Huang et al., Walnut-structure Si–G/C materials with high coulombic efficiency for long-life lithium ion batteries. RSC Adv. 8, 27580–27586 (2018).
[60] X. Li, P. Yan, X. Xiao, J.H. Woo, C. Wang et al., Design of porous Si/C–graphite electrodes with long cycle stability and controlled swelling. Energy Environ. Sci. 10, 1427–1434 (2017).
[61] C. Xu, B. Wang, H. Luo, P. Jing, X. Zhang et al., Embedding silicon in pinecone-derived porous carbon as a high-performance anode for lithium-ion batteries. ChemElectroChem 7, 2889–2895 (2020).
[62] R. Zhou, H. Guo, Y. Yang, Z. Wang, X. Li et al., N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries. J. Alloys Compd. 689, 130–137 (2016).
[63] D. Shao, D. Tang, Y. Mai, L. Zhang, Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. J. Mater. Chem. A 1, 15068–15075 (2013).
[64] X.-Y. Zhou, J.-J. Tang, J. Yang, J. Xie, L.-L. Ma, Silicon@carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries. Electrochim. Acta 87, 663–668 (2013).
[65] J. Xie, L. Tong, L. Su, Y. Xu, L. Wang et al., Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J. Power. Sources 342, 529–536 (2017).
[66] M.-S. Wang, L.-Z. Fan, M. Huang, J. Li, X. Qu, Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries. J. Power. Sources 219, 29–35 (2012).
[67] Z.-L. Xu, Y. Gang, M.A. Garakani, S. Abouali, J.-Q. Huang et al., Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. J. Mater. Chem. A 4, 6098–6106 (2016).
[68] Y. Chen, N. Du, H. Zhang, D. Yang, Porous Si@C coaxial nanotubes: layer-by-layer assembly on ZnO nanorod templates and application to lithium-ion batteries. CrystEngComm 19, 1220–1229 (2017).
[69] H. Wang, J. Xie, S. Zhang, G. Cao, X. Zhao, Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials. RSC Adv. 6, 69882–69888 (2016).
[70] M. Zhang, X. Hou, J. Wang, M. Li, S. Hu et al., Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries. J. Alloys Compd. 588, 206–211 (2014).
[71] A. Gohier, B. Laïk, K.H. Kim, J.L. Maurice, J.P. Pereira-Ramos et al., High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries. Adv. Mater. 24, 2592–2597 (2012).
[72] Y. Chen, Y. Hu, Z. Shen, R. Chen, X. He et al., Hollow core–shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. J. Power. Sources 342, 467–475 (2017).
[73] X. Liu, J. Zhang, W. Si, L. Xi, B. Eichler et al., Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life. ACS Nano 9, 1198–1205 (2015).
[74] J. Wu, X. Qin, H. Zhang, Y.-B. He, B. Li et al., Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon 84, 434–443 (2015).
[75] D.A. Agyeman, K. Song, G.-H. Lee, M. Park, Y.-M. Kang, Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery. Adv. Energy Mater. 6, 1600904 (2016).
[76] H. Su, X. Li, C. Liu, Y. Shang, H. Liu, Scalable synthesis of micrometer-sized porous silicon/carbon composites for high-stability lithium-ion battery anodes. Chem. Eng. J. 451, 138394 (2023).
[77] M. Zhang, J. Li, C. Sun, Z. Wang, Y. Li et al., Durable flexible dual-layer and free-standing silicon/carbon composite anode for lithium-ion batteries. J. Alloys Compd. 932, 167687 (2023).
[78] P. Li, C. Miao, D. Yi, Y. Wei, T. Chen et al., Pomegranate like silicon–carbon composites prepared from lignin-derived phenolic resins as anode materials for lithium-ion batteries. New J. Chem. 47, 16855–16863 (2023).
[79] L. Ma, X. Fu, F. Zhao, L. Yu, W. Su et al., Microsized silicon/carbon composite anodes through in situ polymerization of phenolic resin onto silicon microparticles for high-performance lithium-ion batteries. ACS Appl. Energy Mater. 6, 4989–4999 (2023).
[80] Q. Zhang, Y. Yang, D. Wang, R. Zhang, H. Fan et al., A silicon/carbon/reduced-graphene composite of honeycomb structure for high-performance lithium-ion batteries. J. Alloys Compd. 944, 169185 (2023).
[81] Z.-W. Li, M.-S. Han, J. Yu, Sub-nanometer structured silicon-carbon composite nanolayers armoring on graphite for fast-charging and high-energy-density lithium-ion batteries. Rare Met. 42, 3692–3704 (2023).
[82] H. Shi, W. Zhang, D. Wang, J. Wang, C. Wang et al., Facile preparation of silicon/carbon composite with porous architecture for advanced lithium-ion battery anode. J. Electroanal. Chem. 937, 117427 (2023).
[83] W. Zhang, H. Shi, C. Wang, J. Wang, Z. Wang et al., Synthesizing copper-doped silicon/carbon composite anode as cost-effective active materials for Li-ion batteries. J. Phys. Chem. Solids 179, 111387 (2023).
[84] J. Li, J.-Y. Yang, J.-T. Wang, S.-G. Lu, A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 38, 199–205 (2019).
[85] S. Jiang, B. Hu, R. Sahore, L. Zhang, H. Liu et al., Surface-functionalized silicon nanoparticles as anode material for lithium-ion battery. ACS Appl. Mater. Interfaces 10, 44924–44931 (2018).
[86] T.H. Hwang, Y.M. Lee, B.S. Kong, J.S. Seo, J.W. Choi, Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802–807 (2012).
[87] M. Ge, J. Rong, X. Fang, A. Zhang, Y. Lu et al., Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 6, 174–181 (2013).
[88] Y. Xu, Y. Zhu, C. Wang, Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. J. Mater. Chem. A 2, 9751–9757 (2014).
[89] R. Epur, M. Ramanathan, M.K. Datta, D.H. Hong, P.H. Jampani et al., Scribable multi-walled carbon nanotube-silicon nanocomposites: a viable lithium-ion battery system. Nanoscale 7, 3504–3510 (2015).
[90] H. Liu, Y. Chen, Y. Zhao, K. Liu, X. Guo et al., Two-dimensional Cu2MoS4-loaded silicon nanospheres as an anode for high-performance lithium-ion batteries. ACS Appl. Energy Mater. 4, 13061–13069 (2021).
[91] H.-J. Shin, J.-Y. Hwang, H.J. Kwon, W.-J. Kwak, S.-O. Kim et al., Sustainable encapsulation strategy of silicon nanoparticles in microcarbon sphere for high-performance lithium-ion battery anode. ACS Sustain. Chem. Eng. 8, 14150–14158 (2020).
[92] X. Zhou, Y.-X. Yin, L.-J. Wan, Y.-G. Guo, Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Adv. Energy Mater. 2, 1086–1090 (2012).
[93] S. Chen, P. Bao, X. Huang, B. Sun, G. Wang, Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res. 7, 85–94 (2014).
[94] K. Zhao, M. Pharr, J.J. Vlassak, Z. Suo, Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108, 073517 (2010).
[95] S. Fang, L. Shen, G. Xu, P. Nie, J. Wang et al., Rational design of void-involved Si@TiO2 nanospheres as high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 6497–6503 (2014).
[96] A.R. Park, D.Y. Son, J.S. Kim, J.Y. Lee, N.G. Park et al., Si/Ti2O3/reduced graphene oxide nanocomposite anodes for lithium-ion batteries with highly enhanced cyclic stability. ACS Appl. Mater. Interfaces 7, 18483–18490 (2015).
[97] J. Zhao, W. Wei, N. Xu, X. Wang, L. Chang et al., Dealloying synthesis of silicon nanotubes for high-performance lithium ion batteries. ChemPhysChem 23, e202100832 (2022).
[98] X. Wang, G. Li, M.H. Seo, G. Lui, F.M. Hassan et al., Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 9551–9558 (2017).
[99] T. Song, J. Xia, J.H. Lee, D.H. Lee, M.S. Kwon et al., Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 10, 1710–1716 (2010).
[100] H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012).
[101] J. Graetz, C.C. Ahn, R. Yazami, B. Fultz, Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194 (2003).
[102] L.B. Chen, J.Y. Xie, H.C. Yu, T.H. Wang, An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries. J. Appl. Electrochem. 39, 1157–1162 (2009).
[103] G. Schmuelling, M. Winter, T. Placke, Investigating the Mg-Si binary system via combinatorial sputter deposition As high energy density anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 20124–20133 (2015).
[104] G. Zhao, Y. Meng, N. Zhang, K. Sun, Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes. Mater. Lett. 76, 55–58 (2012).
[105] B.M. Bang, J.-I. Lee, H. Kim, J. Cho, S. Park, High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Energy Mater. 2, 878–883 (2012).
[106] H. Wu, N. Du, X. Shi, D. Yang, Rational design of three-dimensional macroporous silicon as high performance Li-ion battery anodes with long cycle life. J. Power. Sources 331, 76–81 (2016).
[107] J. Liu, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew. Chem. Int. Ed. 54, 9632–9636 (2015).
[108] Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu et al., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011).
[109] Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P.A. van Aken et al., Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 22, 2247–2250 (2010).
[110] X. Zhang, D. Wang, X. Qiu, Y. Ma, D. Kong et al., Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat. Commun. 11, 3826 (2020).
[111] B. Liang, Y. Liu, Y. Xu, Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power. Sources 267, 469–490 (2014).
[112] L. Yue, W. Zhang, J. Yang, L. Zhang, Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries. Electrochim. Acta 125, 206–217 (2014).
[113] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala et al., High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010).
[114] Y. Chen, N. Du, H. Zhang, D. Yang, Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 622, 966–972 (2015).
[115] L. Zhong, J. Guo, L. Mangolini, A stable silicon anode based on the uniform dispersion of quantum dots in a polymer matrix. J. Power. Sources 273, 638–644 (2015).
[116] J. Ji, H. Ji, L.L. Zhang, X. Zhao, X. Bai et al., Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv. Mater. 25, 4673–4677 (2013).
[117] M. Zhou, T. Cai, F. Pu, H. Chen, Z. Wang et al., Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 5, 3449–3455 (2013).
[118] T.D. Bogart, D. Oka, X. Lu, M. Gu, C. Wang et al., Lithium ion battery peformance of silicon nanowires with carbon skin. ACS Nano 8, 915–922 (2014).
[119] J.K. Yoo, J. Kim, Y.S. Jung, K. Kang, Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater. 24, 5452–5456 (2012).
[120] Z. Lu, T. Wong, T.-W. Ng, C. Wang, Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries. RSC Adv. 4, 2440–2446 (2014).
[121] B. Hertzberg, A. Alexeev, G. Yushin, Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 132, 8548–8549 (2010).
[122] J. Liu, N. Li, M.D. Goodman, H.G. Zhang, E.S. Epstein et al., Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. ACS Nano 9, 1985–1994 (2015).
[123] M. Ge, Y. Lu, P. Ercius, J. Rong, X. Fang et al., Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett. 14, 261–268 (2014).
[124] J. Feng, Z. Zhang, L. Ci, W. Zhai, Q. Ai et al., Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries. J. Power. Sources 287, 177–183 (2015).
[125] X. Han, H. Chen, J. Liu, H. Liu, P. Wang et al., A peanut shell inspired scalable synthesis of three-dimensional carbon coated porous silicon particles as an anode for lithium-ion batteries. Electrochim. Acta 156, 11–19 (2015).
[126] Z. Wang, L. Jing, X. Zheng, Z. Xu, Y. Yuan et al., Microspheres of Si@Carbon-CNTs composites with a stable 3D interpenetrating structure applied in high-performance lithium-ion battery. J. Colloid Interface Sci. 629, 511–521 (2023).
[127] J. Ryu, T. Chen, T. Bok, G. Song, J. Ma et al., Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. Nat. Commun. 9, 2924 (2018).
[128] J. Liang, F. Huo, Z. Zhang, W. Yang, M. Javid et al., Controlling the phenolic resin-based amorphous carbon content for enhancing cycling stability of Si nanosheets@C anodes for lithium-ion batteries. Appl. Surf. Sci. 476, 1000–1007 (2019).
[129] S. Chen, Z. Chen, X. Xu, C. Cao, M. Xia et al., Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode. Small 14, e1703361 (2018).
[130] J. Lee, J. Moon, S.A. Han, J. Kim, V. Malgras et al., Everlasting living and breathing gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery. ACS Nano 13, 9607–9619 (2019).
[131] Q. Xu, J.-K. Sun, Y.-X. Yin, Y.-G. Guo, Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 28, 1705235 (2018).
[132] J. Cui, Y. Cui, S. Li, H. Sun, Z. Wen et al., Microsized porous SiOx@C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 30239–30247 (2016).
[133] Y. Ju, J.A. Tang, K. Zhu, Y. Meng, C. Wang et al., SiOx/C composite from rice husks as an anode material for lithium-ion batteries. Electrochim. Acta 191, 411–416 (2016).
[134] B. Jiang, S. Zeng, H. Wang, D. Liu, J. Qian et al., Dual core-shell structured Si@SiOx@C nanocomposite synthesized via a one-step pyrolysis method as a highly stable anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 31611–31616 (2016).
[135] S.J. Lee, H.J. Kim, T.H. Hwang, S. Choi, S.H. Park et al., Delicate structural control of Si-SiOx-C composite via high-speed spray pyrolysis for Li-ion battery anodes. Nano Lett. 17, 1870–1876 (2017).
[136] P. Lv, H. Zhao, C. Gao, T. Zhang, X. Liu, Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochim. Acta 152, 345–351 (2015).
[137] M.K. Majeed, G. Ma, Y. Cao, H. Mao, X. Ma et al., Metal-organic frameworks-derived mesoporous Si/SiOx @NC nanospheres as a long-lifespan anode material for lithium-ion batteries. Chemistry 25, 11991–11997 (2019).
[138] Y. Bai, D. Yan, C. Yu, L. Cao, C. Wang et al., Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. J. Power. Sources 308, 75–82 (2016).
[139] Z.-W. Zhou, Y.-T. Liu, X.-M. Xie, X.-Y. Ye, Constructing novel Si@SnO2 core-shell heterostructures by facile self-assembly of SnO2 nanowires on silicon hollow nanospheres for large, reversible lithium storage. ACS Appl. Mater. Interfaces 8, 7092–7100 (2016).
[140] J. Yang, Y. Wang, W. Li, L. Wang, Y. Fan et al., Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater. 29, 1700523 (2017).
[141] T. Ma, X. Yu, H. Li, W. Zhang, X. Cheng et al., High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries. Nano Lett. 17, 3959–3964 (2017).
[142] G. Wang, Z. Wen, L. Du, S. Li, S. Ji et al., A core–shell Si@Nb2O5 composite as an anode material for lithium-ion batteries. RSC Adv. 6, 39728–39733 (2016).
[143] V.A. Sethuraman, K. Kowolik, V. Srinivasan, Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries. J. Power. Sources 196, 393–398 (2011).
[144] D. Kim, M. Park, S.M. Kim, H.C. Shim, S. Hyun et al., Conversion reaction of nanoporous ZnO for stable electrochemical cycling of binderless Si microparticle composite anode. ACS Nano 12, 10903–10913 (2018).
[145] G. Carbonari, F. Maroni, A. Birrozzi, R. Tossici, F. Croce et al., Synthesis and characterization of Si nanoparticles wrapped by V2O5 nanosheets as a composite anode material for lithium-ion batteries. Electrochim. Acta 281, 676–683 (2018).
[146] J. Li, N.J. Dudney, J. Nanda, C. Liang, Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces 6, 10083–10088 (2014).
[147] X. Xu, Q. Ai, L. Pan, X. Ma, W. Zhai et al., Li7P3S11 solid electrolyte coating silicon for high-performance lithium-ion batteries. Electrochim. Acta 276, 325–332 (2018).
[148] Q. Ai, P. Zhou, W. Zhai, X. Ma, G. Hou et al., Synergistic double-shell coating of graphene and Li4SiO4 on silicon for high performance lithium-ion battery application. Diam. Relat. Mater. 88, 60–66 (2018).
[149] Q. Li, M. Yu, Y. Huang, Z. Cai, S. Wang et al., Phosphorus-doped silicon copper alloy composites as high-performance anode materials for lithium-ion batteries. J. Electroanal. Chem. 944, 117684 (2023).
[150] Z. Sun, M. Li, Z. Zheng, Z. Chen, H. Zhang et al., Cycle-stable Si-based composite anode for lithium-ion batteries enabled by the synergetic combination of mixed lithium phosphates and void-preserving F-doped carbon. Mater. Today Nano 22, 100322 (2023).
[151] R.F.H. Hernandha, B. Umesh, P.C. Rath, L.T.T. Trang, J.-C. Wei et al., N-containing carbon-coated β-Si3N4 enhances Si anodes for high-performance Li-ion batteries. Adv. Sci. 10, 2301218 (2023).
[152] M. Ge, C. Cao, G.M. Biesold, C.D. Sewell, S.-M. Hao et al., Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Adv. Mater. 33, e2004577 (2021).
[153] C. Yan, X.-B. Cheng, Y.-X. Yao, X. Shen, B.-Q. Li et al., An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30, e1804461 (2018).
[154] H. Wang, Y. Tang, Artificial solid electrolyte interphase acting as “armor” to protect the anode materials for high-performance lithium-ion battery. Chem. Res. Chin. Univ. 36, 402–409 (2020).
[155] Y.-F. Tian, S.-J. Tan, C. Yang, Y.-M. Zhao, D.-X. Xu et al., Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode. Nat. Commun. 14, 7247 (2023).
[156] N. Harpak, G. Davidi, F. Patolsky, Breathing parylene-based nanothin artificial SEI for highly-stable long life three-dimensional silicon lithium-ion batteries. Chem. Eng. J. 429, 132077 (2022).
[157] H. Wang, M. Miao, H. Li, Y. Cao, H. Yang et al., In Situ-formed artificial solid electrolyte interphase for boosting the cycle stability of Si-based anodes for Li-ion batteries. ACS Appl. Mater. Interfaces 13, 22505–22513 (2021).
[158] C. Yao, X. Li, Y. Deng, Y. Li, P. Yang et al., An efficient prelithiation of graphene oxide nanoribbons wrapping silicon nanoparticles for stable Li+ storage. Carbon 168, 392–403 (2020).
[159] K.H. Kim, J. Shon, H. Jeong, H. Park, S.-J. Lim et al., Improving the cyclability of silicon anodes for lithium-ion batteries using a simple pre-lithiation method. J. Power. Sources 459, 228066 (2020).
[160] K. Yao, J.P. Zheng, Z. Liang, Binder-free freestanding flexible Si nanoparticle-multi-walled carbon nanotube composite paper anodes for high energy Li-ion batteries. J. Mater. Res. 33, 482–494 (2018).
[161] Q. Pan, P. Zuo, T. Mu, C. Du, X. Cheng et al., Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. J. Power. Sources 347, 170–177 (2017).
[162] Y. Zhu, W. Hu, J. Zhou, W. Cai, Y. Lu et al., Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage. ACS Appl. Mater. Interfaces 11, 18305–18312 (2019).
[163] J. Zhao, Z. Lu, N. Liu, H.-W. Lee, M.T. McDowell et al., Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents. Nat. Commun. 5, 5088 (2014).
[164] Y. Zhang, B. Wu, G. Mu, C. Ma, D. Mu et al., Recent progress and perspectives on silicon anode: synthesis and prelithiation for LIBs energy storage. J. Energy Chem. 64, 615–650 (2022).
[165] Y. Wang, H. Xu, X. Chen, H. Jin, J. Wang, Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries. Energy Storage Mater. 38, 121–129 (2021).
[166] M. Gu, X.-C. Xiao, G. Liu, S. Thevuthasan, D.R. Baer et al., Mesoscale origin of the enhanced cycling-stability of the Si-conductive polymer anode for Li-ion batteries. Sci. Rep. 4, 3684 (2014).
[167] L. Zhang, L. Zhang, L. Chai, P. Xue, W. Hao et al., A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J. Mater. Chem. A 2, 19036–19045 (2014).
[168] J. Yoon, D.X. Oh, C. Jo, J. Lee, D.S. Hwang, Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. Phys. Chem. Chem. Phys. 16, 25628–25635 (2014).
[169] D. Shao, H. Zhong, L. Zhang, Water-soluble conductive composite binder containing PEDOT: PSS as conduction promoting agent for Si anode of lithium-ion batteries. ChemElectroChem 1, 1679–1687 (2014).
[170] A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy et al., Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces 2, 3004–3010 (2010).
[171] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev et al., A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).
[172] Z.-Y. Wu, L. Deng, J.-T. Li, Q.-S. Huang, Y.-Q. Lu et al., Multiple hydrogel alginate binders for Si anodes of lithium-ion battery. Electrochim. Acta 245, 371–378 (2017).
[173] C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui et al., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013).
[174] R. Guo, S. Zhang, H. Ying, W. Yang, J. Wang et al., New, effective, and low-cost dual-functional binder for porous silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 11, 14051–14058 (2019).
微信里点“发现”,扫一下
二维码便可将本文分享至朋友圈。
Set citation alerts for the article
Please enter your email address
CancelConfirm