• Chinese Optics Letters
  • Vol. 22, Issue 5, 053602 (2024)
Hongming Fei1,*, Min Wu2, Han Lin3,**, Yibiao Yang4, and Liantuan Xiao1,***
Author Affiliations
  • 1College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
  • 2College of Information Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong 030619, China
  • 3College of Science, RMIT University, Melbourne, Victoria 3000, Australia
  • 4College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.3788/COL202422.053602 Cite this Article Set citation alerts
    Hongming Fei, Min Wu, Han Lin, Yibiao Yang, Liantuan Xiao, "Tunable hexagonal boron nitride topological optical delay line in the visible region," Chin. Opt. Lett. 22, 053602 (2024) Copy Citation Text show less
    References

    [1] T. Krauss. Why do we need slow light?. Nat. Photonics, 2, 448(2008).

    [2] C. C. Lu, W. Zhao, S. Zhang et al. Observation of topological rainbow in non-Hermitian systems. Chin. Opt. Lett., 21, 123601(2023).

    [3] W. S. Shan, L. J. Lu, X. Y. Wang et al. Broadband continuously tunable microwave photonic delay line based on cascaded silicon microrings. Opt. Express, 29, 3375(2021).

    [4] N. M. Tessema, Z. Cao, J. H. C. Van Zantvoort et al. A tunable Si3N4 integrated true time delay circuit for optically-controlled K-band radio beamformer in satellite communication. J. Lightwave Technol., 34, 4736(2016).

    [5] X. Wang, W. Shi, R. Vafaei et al. Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations. IEEE Photon. Technol. Lett., 23, 290(2011).

    [6] X. Wang, Y. H. Zhao, Y. H. Ding et al. Tunable optical delay line based on integrated grating-assisted contradirectional couplers. Photonics Res., 6, 880(2018).

    [7] Q. Q. Song. Scalable and reconfigurable continuously tunable lithium niobate thin film delay line using graphene electrodes. IEEE Photonics J., 14, 6648708(2022).

    [8] X. Y. Wang, L. J. Zhou, R. F. Li et al. Continuously tunable ultra-thin silicon waveguide optical delay line. Optica, 4, 507(2017).

    [9] G. Arregui, J. Gomis-Bresco, C. M. Sotomayor-Torres et al. Quantifying the robustness of topological slow light. Phys. Rev. Lett., 126, 027403(2021).

    [10] M. Momchil, V. Savona. Wide-band slow light in compact photonic crystal coupled-cavity waveguides. Optica, 2, 631(2015).

    [11] Y. D. Zhang, L. P. Wang, H. L. Fan et al. Ultra-slow light with high normalized delay–bandwidth product and refractive-index sensing in photonic crystal coupled-cavity waveguide. Opt. Commun., 523, 128721(2022).

    [12] S. A. Schulz, L. O’Faolain, D. M. Beggs et al. Dispersion engineered slow light in photonic crystals: a comparison. J. Opt., 12, 104004(2010).

    [13] L. Liu, Y. K. Wang, M. X. Li. Slow light in topological coupled-corner-state waveguide. J. Phys. D: Appl. Phys., 55, 335104(2022).

    [14] K. Hirotani, R. Shiratori, T. Baba. Si photonic crystal slow light waveguides optimized through informatics technology. Opt. Lett., 46, 4422(2021).

    [15] J. F. Chen, W. Y. Liang, Z. Y. Li. Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals. Phys. Rev. B, 99, 014103(2019).

    [16] H. Yoshimi, T. Yamaguchi, Y. Ota et al. Slow light waveguides in topological valley photonic crystals. Opt. Lett., 45, 2648(2020).

    [17] H. Yoshimi, T. Yamaguchi, R. Katsumi et al. Experimental demonstration of topological slow light waveguides in valley photonic crystals. Opt. Express, 29, 13441(2021).

    [18] K. Kuruma, H. Yoshimi, Y. Ota et al. Topologically-protected single-photon sources with topological slow light photonic crystal waveguides. Laser Photonics Rev., 16, 2200077(2021).

    [19] K. Lai, T. Ma, X. Bo et al. Experimental realization of a reflections-free compact delay line based on a photonic topological insulator. Sci. Rep., 6, 28453(2016).

    [20] W. Zheng, L. Liu, Y. K. Wang. Zero-GVD slow light of coupled topological edge states in a sandwiched photonic crystal waveguide. Opt. Mater. Express, 12, 4252(2022).

    [21] S. A. Mann, A. Alù. Broadband topological slow light through Brillouin zone winding. Phys. Rev. Lett., 127, 123601(2021).

    [22] L. O’Faolain, S. A. Schulz, D. M. Beggs et al. Loss engineered slow light waveguides. Opt. Express, 18, 27627(2010).

    [23] S. Peng, N. J. Schilder, X. Ni et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett., 122, 117401(2019).

    [24] M. I. Shalaev, W. Walasik, A. Tsukernik et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol., 14, 31(2019).

    [25] X. T. He, E. T. Liang, J. J. Yuan et al. A silicon-on-insulator slab for topological valley transport. Nat. Commun., 10, 872(2019).

    [26] M. Ezawa. Topological Kirchhoff law and bulk-edge correspondence for valley Chern and spin-valley Chern numbers. Phys. Rev. B, 88, 161406(2013).

    [27] S. Barik, A. Karasahin, S. Mittal et al. Chiral quantum optics using a topological resonator. Phys. Rev. B, 101, 205303(2020).

    [28] M. J. Mehrabad, A. P. Foster, R. Dost et al. Chiral topological photonics with an embedded quantum emitter. Optica, 7, 1690(2020).

    [29] Y. H. Han, H. M. Fei, H. Lin et al. Design of broadband all-dielectric valley photonic crystals at telecommunication wavelength. Opt. Commun., 488, 126847(2021).

    [30] M. Wu, H. M. Fei, H. Lin et al. A hexagonal boron nitride super self-collimator for optical asymmetric transmission in the visible region. Opt. Mater., 112, 110483(2021).

    [31] M. Wu, H. M. Fei, H. Lin et al. Design of asymmetric transmission of photonic crystal heterostructure based on two-dimensional hexagonal boron nitride material. Acta Phys. Sin., 70, 028501(2021).

    [32] M. Wu, Y. B. Yang, H. M. Fei et al. Unidirectional transmission of visible region topological edge states in hexagonal boron nitride valley photonic crystals. Opt. Express, 30, 6275(2022).

    [33] M. Wu, Y. B. Yang, H. M. Fei et al. On-chip ultra-compact hexagonal boron nitride topological ring-resonator in visible region. J. Lightwave Technol., 40, 7610(2022).

    [34] N. Chejanovsky, M. Rezai, F. Paolucci et al. Structural attributes and photo-dynamics of visible spectrum quantum emitters in hexagonal boron nitride. Nano Lett., 16, 7037(2016).

    [35] R. Bourrellier, S. Meuret, A. Tararan et al. Bright UV single photon emission at point defects in h-BN. Nano Lett., 16, 4317(2016).

    [36] S. Kim, J. E. Fröch, J. Christian et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun., 9, 2623(2018).

    [37] K. Sejeong, T. Milos, A. Igor. Design of photonic microcavities in hexagonal boron nitride. Beilstein J. Nanotechnol., 9, 102(2018).

    [38] H. Jiang, S. Choudhury, Z. A. Kudyshev et al. Enhancing sensitivity to ambient refractive index with tunable few-layer graphene/hBN nanoribbons. Photonics Res., 7, 815(2019).

    [39] M. Nonahal, C. Li, H. R. Ren et al. Engineering quantum nanophotonic components from hexagonal boron nitride. Laser Photonics Rev., 17, 2300019(2023).

    [40] M. J. Molaei, M. Younas, M. Rezakazemi. A comprehensive review on recent advances in two-dimensional (2D) hexagonal boron nitride. ACS Appl. Electron. Mater., 3, 5165(2021).

    [41] I. Aharonovich, M. Toth. Quantum emitters in two dimensions. Science, 358, 170(2017).

    [42] P. F. Sun, Y. Yu, Z. Y. An et al. Deterministic time-bin entanglement between a single photon and an atomic ensemble. Phys. Rev. Lett., 128, 060502(2022).

    [43] J. K. Yang, Y. Hwang, S. S. Oh. Evolution of topological edge modes from honeycomb photonic crystals to triangular-lattice photonic crystals. Phys. Rev. Res., 3, L022025(2021).

    [44] R. J. Davis, Y. Zhou, D. J. Bisharat et al. Topologically protected edge states in triangular lattices. Phys. Rev. B, 106, 165403(2022).

    [45] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821(2014).

    [46] F. Liu, K. Wakabayashi. Novel topological phase with a zero Berry curvature. Phys. Rev. Lett., 118, 076803(2017).

    [47] V. Varmazyari, H. Habibiyan, H. Ghafoorifard. Slow light in ellipse-hole photonic crystal line-defect waveguide with high normalized delay bandwidth product. J. Opt. Soc. Am. B, 31, 771(2014).

    [48] J. Li, C. H. Wen, S. Gauza et al. Refractive indices of liquid crystals for display applications. J. Disp. Technol., 1, 51(2005).

    [49] S. T. Wu, U. Efron, L. D. Hess. Birefringence measurements of liquid crystals. Appl. Opt., 23, 3911(1984).

    [50] W. Wang, G. Li, D. Xue. Study of voltage-dependent electric-control birefringence of liquid crystal. Acta Opt. Sin., 24, 970(2004).

    [51] J. L. Wang, M. Q. Du, L. L. Zhang et al. Transmission characteristics of photonic crystal fibers based on filling different kinds of liquid crystals. Acta Phys. Sin., 64, 120702(2015).

    Hongming Fei, Min Wu, Han Lin, Yibiao Yang, Liantuan Xiao, "Tunable hexagonal boron nitride topological optical delay line in the visible region," Chin. Opt. Lett. 22, 053602 (2024)
    Download Citation