• Infrared and Laser Engineering
  • Vol. 51, Issue 12, 20220667 (2022)
Chunfang Zhang1,2, Yuan Liu1,2, Mingliang Gong1,2, Bingfeng Liu2,3..., Ruixin Gong2,4, Jiabo Liu1,2, Heping An1,2, Dongliang Zhang1,2, Xiantong Zheng1,2, Lidan Lu1,2, Yulin Feng1,2 and Lianqing Zhu1,2|Show fewer author(s)
Author Affiliations
  • 1School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science & Technology University, Beijing 100096, China
  • 2Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing 100016, China
  • 3School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230002, China
  • 4School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130012, China
  • show less
    DOI: 10.3788/IRLA20220667 Cite this Article
    Chunfang Zhang, Yuan Liu, Mingliang Gong, Bingfeng Liu, Ruixin Gong, Jiabo Liu, Heping An, Dongliang Zhang, Xiantong Zheng, Lidan Lu, Yulin Feng, Lianqing Zhu. Research progress of barrier InAs/InAsSb type-II superlattice infrared detectors (invited)[J]. Infrared and Laser Engineering, 2022, 51(12): 20220667 Copy Citation Text show less
    References

    [1] C Yi. Review and prospect of HgCdTe detectors. Infrared and Laser Engineering, 51, 20210988(2022).

    [2] A Rogalski. HgCdTe infrared detector material: history, status and outlook. Reports on Progress in Physics, 68, 2267(2005).

    [3] Rogalski A. HgCdTe Photodetects [M]. US: Elsevier, 2020: 235335.

    [4] Rossi A De, E Costard, N Guerineau, et al. Effect of finite pixel size on optical coupling in QWIPs. Infrared Physics & Technology, 44, 325-330(2003).

    [5] B Levine. Quantum‐well infrared photodetectors. Journal of Applied Physics, 74, R1-R81(1993).

    [6] Schneider H, Liu H C. Quantum Well Infrared Photodetects [M]. US: Springer, 2007: 126.

    [7] N Gautam, H Kim, M Kutty, et al. Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers. Applied Physics Letters, 96, 231107(2010).

    [8] H Kim, O Cellek, Z-Y Lin, et al. Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices. Applied Physics Letters, 101, 161114(2012).

    [9] M Z Tidrow. Type II strained layer superlattice: A potential future IR solution. Infrared Physics & Technology, 52, 322-325(2009).

    [10] S Maimon, E Finkman, G Bahir, et al. Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors. Applied Physics Letters, 73, 2003(1998).

    [11] P Martyniuk, A Rogalski. Quantum-dot infrared photodetectors: Status and outlook. Progress in Quantum Electronics, 32, 89-120(2008).

    [12] H Liu, M Gao, J Mccaffrey, et al. Quantum dot infrared photodetectors. Applied Physics Letters, 78, 79-81(2001).

    [13] W Hoke, P Lemonias, R Traczewski. Metalorganic vapor deposition of CdTe and HgCdTe epitaxial films on InSb and GaAs substrates. Applied Physics Letters, 44, 1046(1984).

    [14] J Wu, S Chen, A Seeds, et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. Journal of Physics D: Applied Physics, 48, 363001(2015).

    [15] Kinch M A. Fundamentals of Infrared Detect Materials [M]. US: SPIE Press, 2007.

    [16] A Rogalski. Recent progress in infrared detector technologies. Infrared Physics & Technology, 54, 136-154(2011).

    [17] G Osbourn, L Dawson, R Biefeld, et al. III–V strained layer supperlattices for long‐wavelength detector applications: Recent progress. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 5, 3150(1987).

    [18] Rogalski A, Kopytko M, Martyniuk P. InAsGaSb typeII superlattice infrared detects: Three decades of development[C]Proceedings of SPIE, 2017.

    [19] Bajaj J, Sullivan G, Lee D, et al. Comparison of typeII superlattice HgCdTe infrared detect technologies[C]Proceedings of SPIE, 2007.

    [20] S Maimon, G Wicks. n B n detector, an infrared detector with reduced dark current and higher operating temperature. Applied Physics Letters, 89, 151109(2006).

    [21] Klipstein P, Klin O, Grossman S, et al. MWIR InAsSb XBn detects f high operating temperatures[C]Proceedings of SPIE, 2010.

    [22] Klipstein P. " XBn" barrier photodetects f high sensitivity high operating temperature infrared senss[C]Proceedings of SPIE, 2008.

    [23] D Z-y Ting, C J Hill, A Soibel, et al. A high-performance long wavelength superlattice complementary barrier infrared detector. Applied Physics Letters, 95, 023508(2009).

    [24] D Z Ting, A Soibel, A Khoshakhlagh, et al. Exclusion, extraction, and junction placement effects in the complementary barrier infrared detector. Applied Physics Letters, 102, 121109(2013).

    [25] C Canedy, E Aifer, I Vurgaftman, et al. Antimonide type-II “W” photodiodes with long-wave infrared R 0 A comparable to HgCdTe. Journal of Electronic Materials, 36, 852-860(2007).

    [26] X Xie, Z Zhang, C Shan, et al. Dual-color ultraviolet photodetector based on mixed-phase-MgZnO/i-MgO/p-Si double heterojunction. Applied Physics Letters, 101, 081104(2012).

    [27] B-m Nguyen, G Chen, A Hoang, et al. Effect of contact doping in superlattice-based minority carrier unipolar detectors. Applied Physics Letters, 99, 033501(2011).

    [28] B-m Nguyen, S Bogdanov, S A Pour, et al. Minority electron unipolar photodetectors based on type II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection. Applied Physics Letters, 95, 183502(2009).

    [29] A Rogalski, P Martyniuk, M Kopytko. InAs/GaSb type-II superlattice infrared detectors: Future prospect. Applied Physics Reviews, 4, 031304(2017).

    [30] M Hakala, M J Puska, R M Nieminen. Native defects and self-diffusion in GaSb. Journal of Applied Physics, 91, 4988-4994(2002).

    [31] S Svensson, D Donetsky, D Wang, et al. Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization. Journal of Crystal Growth, 334, 103-107(2011).

    [32] Belenky G, Kipshidze G, Dosky D, et al. Effects of carrier concentration phonon energy on carrier lifetime in type2 SLS properties of InAs1X SbX alloys [C]Proceedings of SPIE, 2011.

    [33] B Olson, E Shaner, J Kim, et al. Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice. Applied Physics Letters, 101, 092109(2012).

    [34] A Rogalski, P Martyniuk, M Kopytko. Type-II superlattice photodetectors versus HgCdTe photodiodes. Progress in Quantum Electronics, 68, 100228(2019).

    [35] Ting D Z, Keo S A, Liu J K, et al. Barrier infrared detect research at the Jet Propulsion Labaty[C]Proceedings of SPIE, 2012.

    [36] T Schuler-sandy, S Myers, B Klein, et al. Gallium free type II InAs/InAsxSb1-x superlattice photodetectors. Applied Physics Letters, 101, 071111(2012).

    [37] A Prins, M Lewis, Z Bushell, et al. Evidence for a defect level above the conduction band edge of InAs/InAsSb type-II superlattices for applications in efficient infrared photodetectors. Applied Physics Letters, 106, 171111(2015).

    [38] P Webster, N Riordan, S Liu, et al. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry. Applied Physics Letters, 106, 061907(2015).

    [39] D Z Ting, A Soibel, S D Gunapala. Hole effective masses and subband splitting in type-II superlattice infrared detectors. Applied Physics Letters, 108, 183504(2016).

    [40] D Z Ting, A Soibel, S D Gunapala. Type-II superlattice hole effective masses. Infrared Physics & Technology, 84, 102-106(2017).

    [41] A Hoang, G Chen, R Chevallier, et al. High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection. Applied Physics Letters, 104, 251105(2014).

    [42] I Vurgaftman, G Belenky, Y Lin, et al. Interband absorption strength in long-wave infrared type-II superlattices with small and large superlattice periods compared to bulk materials. Applied Physics Letters, 108, 222101(2016).

    [43] N A Kotulak, J A Nolde, M B Katz, et al. Three-dimensional visualization of Sb segregation in InAs/InAsSb superlattices using atom probe tomography. Journal of Applied Physics, 128, 015302(2020).

    [44] H Haugan, K Mahalingam, F Szmulowicz, et al. Quantitative study of the effect of deposition temperature on antimony incorporation in InAs/InAsSb superlattices. Journal of Crystal Growth, 436, 134-137(2016).

    [45] Klipstein P, Avnon E, Benny Y, et al. InAsGaSb Type II superlattice barrier devices with a low dark current a highquantum efficiency[C]Proceedings of SPIE, 2014.

    [46] Ting D Z, Soibel A, Khoshakhlagh A, et al. The emergence of InAsInAsSb typeII strained layer superlattice barrier infrared detects[C]Proceedings of SPIE, 2019.

    [47] R Biefeld, K Baucom, S Kurtz. The growth of InAs1-xSbx/InAs strained-layer superlattices by metalorganic chemical vapot deposition. Journal of Crystal Growth, 137, 231-240(1994).

    [48] Zhang Y H. InAsInAs x Sb1x TypeII Superlattice wave Infrared Lasers [M]. Boca Raton: CRC Press, 2019: 461500.

    [49] D Lackner, O Pitts, M Steger, et al. Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 μ m. Applied Physics Letters, 95, 081906(2009).

    [50] E Steenbergen, B Connelly, G Metcalfe, et al. Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb. Applied Physics Letters, 99, 251110(2011).

    [51] D Zuo, R Liu, D Wasserman, et al. Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors. Applied Physics Letters, 106, 071107(2015).

    [52] D Wu, Q Durlin, A Dehzangi, et al. High quantum efficiency mid-wavelength infrared type-II InAs/InAs1− xSbx superlattice photodiodes grown by metal-organic chemical vapor deposition. Applied Physics Letters, 114, 011104(2019).

    [53] R Hao, Y Ren, S Liu, et al. Fabrication and characterization of high lattice matched InAs/InAsSb superlattice infrared photodetector. J Cryst Growth, 470, 33-36(2017).

    [54] E Delli, V Letka, P D Hodgson, et al. Mid-infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon. Acs Photonics, 6, 538-544(2019).

    [55] Q Durlin, J Perez, L Cerutti, et al. Midwave infrared barrier detector based on Ga-free InAs/InAsSb type-II superlattice grown by molecular beam epitaxy on Si substrate. Infrared Physics & Technology, 96, 39-43(2019).

    [56] A Haddadi, G Chen, R Chevallier, et al. InAs/InAs1− xSbx type-II superlattices for high performance long wavelength infrared detection. Applied Physics Letters, 105, 121104(2014).

    [57] A Haddadi, A Dehzangi, S Adhikary, et al. Background-limited long wavelength infrared InAs/InAs1− xSbx type-II superlattice-based photodetectors operating at 110 K. APL Materials, 5, 035502(2017).

    [58] R Chevallier, A Haddadi, M Razeghi. Dark current reduction in microjunction-based double electron barrier type-II InAs/InAsSb superlattice long-wavelength infrared photodetectors. Scientific Reports, 7, 1-6(2017).

    [59] K Michalczewski, P Martyniuk, C Wu, et al. Demonstration of HOT LWIR T2 SLs InAs/InAsSb photodetectors grown on GaAs substrate. Infrared Physics & Technology, 95, 222-226(2018).

    [60] A Haddadi, R Chevallier, G Chen, et al. Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1− xSbx type-II superlattices. Applied Physics Letters, 106, 011104(2015).

    [61] J M Fastenau, D Lubyshev, S A Nelson, et al. Direct MBE growth of metamorphic nBn infrared photodetectors on 150 mm Ge-Si substrates for heterogeneous integration. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 37, 031216(2019).

    [62] Fastenau J M, Lubyshev D, Nelson S A, et al. GaSbbased infrared photodetect structures grown on GeSi substrates via metamphic buffers [C]Proceedings of SPIE, 2019.

    [63] Wicks G, Savich G, Pedrazzani J, et al. Infrared detect epitaxial designs f suppression of surface leakage current [C]Proceedings of SPIE, 2010.

    [64] E Yablonovitch, T Gmitter. Auger recombination in silicon at low carrier densities. Applied Physics Letters, 49, 587-590(1986).

    [65] A Soibel, C J Hill, S A Keo, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors. Applied Physics Letters, 105, 023512(2014).

    [66] K Hossain, L Höglund, L Phinney, et al. Hydrogenation defect passivation for improved minority carrier lifetime in midwavelength Ga-Free InAs/InAsSb superlattices. Journal of Electronic Materials, 45, 5626-5629(2016).

    [67] Ting D Z, Hill C J, Seibel A, et al. High operating temperature barrier infrared detect with tailable cutoff wavelength [P]. US. Patent Application, 20100072514, 2015.

    [68] D Z Ting, B Rafol, S A Keo, et al. InAs/InAsSb type-II superlattice mid-wavelength infrared focal plane array with significantly higher operating temperature than InSb. IEEE Photonics Journal, 10, 1-6(2018).

    [69] H Wieder. Surface and interface barriers of In x Ga 1− x As binary and ternary alloys. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 21, 1915-1919(2003).

    [70] A Jang, H-j Lee, Y C Kim, et al. Electrical characteristics of a Ga-free T2SL mid-wave infrared nBn detector based on an InAs/AlAsSb/InAsSb barrier. Journal of Electronic Materials, 4681-4688(202251).

    [71] A D Hood, A J Evans, A Ikhlassi, et al. LWIR strained-layer superlattice materials and devices at Teledyne imaging sensors. Journal of Electronic Materials, 39, 1001-1006(2010).

    [72] G Deng, D Chen, S Yang, et al. High operating temperature pBn barrier mid-wavelength infrared photodetectors and focal plane array based on InAs/InAsSb strained layer superlattices. Opt Express, 28, 17611(2020).

    [73] L She, J Jiang, W Chen, et al. Mid-wave infrared p+-Bn InAs/InAsSb type-II superlattice photodetector with an AlAsSb/InAsSb superlattice barrier. Infrared Physics & Technology, 121, 104015(2022).

    [74] B Marozas, W Hughes, X Du, et al. Surface dark current mechanisms in III-V infrared photodetectors. Optical Materials Express, 8, 1419-1424(2018).

    [75] D Z Ting, A Soibel, A Khoshakhlagh, et al. Long wavelength InAs/InAsSb superlattice barrier infrared detectors with p-type absorber quantum efficiency enhancement. Applied Physics Letters, 118, 133503(2021).

    [76] D Z Ting, A Khoshakhlagh, A Soibel, et al. Long and very long wavelength InAs/InAsSb superlattice complementary barrier infrared detectors. Journal of Electronic Materials, 4666-4674(202251).

    [77] D Z Ting, S B Rafol, A Khoshakhlagh, et al. InAs/InAsSb Type-II strained-layer superlattice infrared photodetectors. Micromachines (Basel), 11, 958(2020).

    [78] Z Deng, D Guo, J Huang, et al. Mid-wave infrared InAs/GaSb type-II superlattice photodetector with nBp design grown on GaAs substrate. IEEE Journal of Quantum Electronics, 55, 1-5(2019).

    [79] P Klipstein, Y Livneh, A Glozman, et al. Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors. Journal of Electronic Materials, 43, 2984-2990(2014).

    [80] L K Casias, C P Morath, E H Steenbergen, et al. Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material. Applied Physics Letters, 116, 182109(2020).

    [81] Liu Z, Zhu L, Zhang D, et al. Recent progress in dark current suppression efficiency enhancement methods f antimonide superlattice detects [C]AOPC 2021: Infrared Device Infrared Technology, 2021, 12061: 344349.

    [82] Ting D Z, Soibel A, Khoshakhlagh A, et al. Antimonide eSWIR, MWIR, LWIR barrier infrared detect focal plane array development [C]Proceedings of SPIE, 2018.

    [83] D Wu, A Dehzangi, M Razeghi. Demonstration of mid-wavelength infrared nBn photodetectors based on type-II InAs/InAs1-xSbx superlattice grown by metal-organic chemical vapor deposition. Applied Physics Letters, 115, 061102(2019).

    [84] D Wu, J Li, A Dehzangi, et al. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice. AIP Advances, 10, 025018(2020).

    [85] G Deng, X Song, M Fan, et al. Upside-down InAs/InAs 1-x Sb x type-II superlattice-based nBn mid-infrared photodetectors with an AlGaAsSb quaternary alloy barrier. Optics Express, 28, 13616(2020).

    [86] D Wu, J Li, A Dehzangi, et al. High performance InAs/InAsSb Type-II superlattice mid-wavelength infrared photodetectors with double barrier. Infrared Physics & Technology, 109, 103439(2020).

    [87] Arounassalame V, Bouschet M, Alchaar R, et al. Electrooptical acterizations to study minity carrier transpt in Gafree InAsInAsSb T2SL XBn wave infrared photodetect; proceedings of the Electrooptical infrared systems [C]Proceedings of SPIE, 2021.

    [88] A Soibel, D Z Ting, S B Rafol, et al. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density. Applied Physics Letters, 114, 161103(2019).

    [89] R C Jones. A method of describing the detectivity of photoconductive cells. Review of Scientific Instruments, 24, 1035-1040(1953).

    [90] G Ariyawansa, J Duran, C Reyner, et al. InAs/InAsSb strained-layer superlattice mid-wavelength infrared detector for high-temperature operation. Micromachines (Basel), 10, 806(2019).

    [91] S Gunapala, S Rafol, D Ting, et al. Infrared digital focal plane arrays for earth remote sensing instruments. Multidisciplinary Digital Publishing Institute Proceedings, 27, 54(2019).

    [92] A Dehzangi, D Wu, R Mcclintock, et al. Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation. Applied Physics Letters, 116, 221103(2020).

    [93] Kim Y H, Lee H J, Kim Y C, et al. HOT InAsInAsSb nBn detect development f SWaP detect [C]Proceedings of SPIE, 2021.

    [94] A Haddadi, A Dehzangi, R Chevallier, et al. Bias-selectable nBn dual-band long-/very long-wavelength infrared photodetectors based on InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices. Sci Rep, 7, 3379(2017).

    [95] G Bishop, E Plis, J Rodriguez, et al. nBn detectors based on In As∕ Ga Sb type-II strain layer superlattice. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 26, 1145-1148(2008).

    [96] Soibel A, Nguyen J, Khoshakhlagh A, et al. Highperfmance LWIR superlattice detects FPA based on CBIRD design[C]Proceedings of SPIE, 2012.

    [97] N Gautam, S Myers, A V Barve, et al. Barrier engineered infrared photodetectors based on type-II InAs/GaSb strained layer superlattices. IEEE Journal of Quantum Electronics, 49, 211-217(2012).

    [98] J Huang, Z Xie, Y Chen, et al. High speed mid-wave infrared uni-traveling carrier photodetector. IEEE Journal of Quantum Electronics, 56, 1-7(2020).

    [99] Shi Y, Hu R, Deng G, Et Al. InAsGa (In) Sb typeII superlattices shtdle dual col infrared detects[C]Proceedings of SPIE, 2015.

    [100] G Chen, A Haddadi, A M Hoang, et al. Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application. Opt Lett, 40, 45-7(2015).

    [101] A Haddadi, M Razeghi. Bias-selectable three-color short-, extended-short-, and mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices. Opt Lett, 42, 4275-4280(2017).

    [102] Kazemi A, Myers S, Taghipour Z, et al. High quantum efficiency wavelength infrared superlattice photodetect[C]Proceedings of SPIE, 2017.

    [103] A Kazemi, S Myers, Z Taghipour, et al. Mid-wavelength infrared unipolar nBp superlattice photodetector. Infrared Physics & Technology, 88, 114-118(2018).

    [104] V M More, Y Kim, J Jeon, et al. Dual-band unipolar barrier infrared photodetector based on InGaAsSb bulk and type-II InAs/GaSb superlattice absorbers. Journal of Alloys and Compounds, 868, 159195(2021).

    [105] J Liu, H Zhu, H Zhu, et al. Long-wavelength InAs/GaSb superlattice double heterojunction infrared detectors using InPSb/InAs superlattice hole barrier. Semiconductor Science and Technology, 37, 055016(2022).

    [106] Gunapala S, Ting D, Soibel A, et al. Antimonides T2SL wave longwave infrared focal plane arrays f Earth remote sensing applications[C]Proceedings of SPIE, 2020.

    [107] X Du, G Savich, B Marozas, et al. Suppression of lateral diffusion and surface leakage currents in nBn photodetectors using an inverted design. Journal of Electronic Materials, 47, 1038-1044(2018).

    [108] Yingjie He, P Zhenyu, C Xiancun, et al. Dual-color mid-mid-wavelength infrared InAs/InAsSb superlattice focal plane arrays. Journal of Infrared and Millimeter Waves, 41, 545-550(2022).

    [109] Zavalaman U, Bouschet M, Perez JP, et al. Structural, optical electrical acterizations of wave infrared Gafree typeII InAsInAsSb superlattice barrier photodetects[C]proceedings of the Photonics MDPI, 2020.

    [110] D Z Ting, A Khoshakhlagh, A Soibel, et al. Long wavelength InAs/InAsSb infrared superlattice challenges: A theoretical investigation. Journal of Electronic Materials, 49, 6936-6945(2020).

    [111] P Klipstein. XBnn and XBpp infrared detectors. Journal of Crystal Growth, 425, 351-356(2015).

    [112] D Sidor, G Savich, G Wicks. Surface leakage mechanisms in III–V infrared barrier detectors. Journal of Electronic Materials, 45, 4663-4667(2016).

    Chunfang Zhang, Yuan Liu, Mingliang Gong, Bingfeng Liu, Ruixin Gong, Jiabo Liu, Heping An, Dongliang Zhang, Xiantong Zheng, Lidan Lu, Yulin Feng, Lianqing Zhu. Research progress of barrier InAs/InAsSb type-II superlattice infrared detectors (invited)[J]. Infrared and Laser Engineering, 2022, 51(12): 20220667
    Download Citation