[1] C Yi. Review and prospect of HgCdTe detectors. Infrared and Laser Engineering, 51, 20210988(2022).
[2] A Rogalski. HgCdTe infrared detector material: history, status and outlook. Reports on Progress in Physics, 68, 2267(2005).
[3] Rogalski A. HgCdTe Photodetects [M]. US: Elsevier, 2020: 235335.
[4] Rossi A De, E Costard, N Guerineau, et al. Effect of finite pixel size on optical coupling in QWIPs. Infrared Physics & Technology, 44, 325-330(2003).
[5] B Levine. Quantum‐well infrared photodetectors. Journal of Applied Physics, 74, R1-R81(1993).
[6] Schneider H, Liu H C. Quantum Well Infrared Photodetects [M]. US: Springer, 2007: 126.
[7] N Gautam, H Kim, M Kutty, et al. Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers. Applied Physics Letters, 96, 231107(2010).
[8] H Kim, O Cellek, Z-Y Lin, et al. Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices. Applied Physics Letters, 101, 161114(2012).
[9] M Z Tidrow. Type II strained layer superlattice: A potential future IR solution. Infrared Physics & Technology, 52, 322-325(2009).
[10] S Maimon, E Finkman, G Bahir, et al. Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors. Applied Physics Letters, 73, 2003(1998).
[11] P Martyniuk, A Rogalski. Quantum-dot infrared photodetectors: Status and outlook. Progress in Quantum Electronics, 32, 89-120(2008).
[12] H Liu, M Gao, J Mccaffrey, et al. Quantum dot infrared photodetectors. Applied Physics Letters, 78, 79-81(2001).
[13] W Hoke, P Lemonias, R Traczewski. Metalorganic vapor deposition of CdTe and HgCdTe epitaxial films on InSb and GaAs substrates. Applied Physics Letters, 44, 1046(1984).
[14] J Wu, S Chen, A Seeds, et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. Journal of Physics D: Applied Physics, 48, 363001(2015).
[15] Kinch M A. Fundamentals of Infrared Detect Materials [M]. US: SPIE Press, 2007.
[16] A Rogalski. Recent progress in infrared detector technologies. Infrared Physics & Technology, 54, 136-154(2011).
[17] G Osbourn, L Dawson, R Biefeld, et al. III–V strained layer supperlattices for long‐wavelength detector applications: Recent progress. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 5, 3150(1987).
[18] Rogalski A, Kopytko M, Martyniuk P. InAsGaSb typeII superlattice infrared detects: Three decades of development[C]Proceedings of SPIE, 2017.
[19] Bajaj J, Sullivan G, Lee D, et al. Comparison of typeII superlattice HgCdTe infrared detect technologies[C]Proceedings of SPIE, 2007.
[20] S Maimon, G Wicks. n B n detector, an infrared detector with reduced dark current and higher operating temperature. Applied Physics Letters, 89, 151109(2006).
[21] Klipstein P, Klin O, Grossman S, et al. MWIR InAsSb XBn detects f high operating temperatures[C]Proceedings of SPIE, 2010.
[22] Klipstein P. " XBn" barrier photodetects f high sensitivity high operating temperature infrared senss[C]Proceedings of SPIE, 2008.
[23] D Z-y Ting, C J Hill, A Soibel, et al. A high-performance long wavelength superlattice complementary barrier infrared detector. Applied Physics Letters, 95, 023508(2009).
[24] D Z Ting, A Soibel, A Khoshakhlagh, et al. Exclusion, extraction, and junction placement effects in the complementary barrier infrared detector. Applied Physics Letters, 102, 121109(2013).
[25] C Canedy, E Aifer, I Vurgaftman, et al. Antimonide type-II “W” photodiodes with long-wave infrared R 0 A comparable to HgCdTe. Journal of Electronic Materials, 36, 852-860(2007).
[26] X Xie, Z Zhang, C Shan, et al. Dual-color ultraviolet photodetector based on mixed-phase-MgZnO/i-MgO/p-Si double heterojunction. Applied Physics Letters, 101, 081104(2012).
[27] B-m Nguyen, G Chen, A Hoang, et al. Effect of contact doping in superlattice-based minority carrier unipolar detectors. Applied Physics Letters, 99, 033501(2011).
[28] B-m Nguyen, S Bogdanov, S A Pour, et al. Minority electron unipolar photodetectors based on type II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection. Applied Physics Letters, 95, 183502(2009).
[29] A Rogalski, P Martyniuk, M Kopytko. InAs/GaSb type-II superlattice infrared detectors: Future prospect. Applied Physics Reviews, 4, 031304(2017).
[30] M Hakala, M J Puska, R M Nieminen. Native defects and self-diffusion in GaSb. Journal of Applied Physics, 91, 4988-4994(2002).
[31] S Svensson, D Donetsky, D Wang, et al. Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization. Journal of Crystal Growth, 334, 103-107(2011).
[32] Belenky G, Kipshidze G, Dosky D, et al. Effects of carrier concentration phonon energy on carrier lifetime in type2 SLS properties of InAs1X SbX alloys [C]Proceedings of SPIE, 2011.
[33] B Olson, E Shaner, J Kim, et al. Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice. Applied Physics Letters, 101, 092109(2012).
[34] A Rogalski, P Martyniuk, M Kopytko. Type-II superlattice photodetectors versus HgCdTe photodiodes. Progress in Quantum Electronics, 68, 100228(2019).
[35] Ting D Z, Keo S A, Liu J K, et al. Barrier infrared detect research at the Jet Propulsion Labaty[C]Proceedings of SPIE, 2012.
[36] T Schuler-sandy, S Myers, B Klein, et al. Gallium free type II InAs/InAsxSb1-x superlattice photodetectors. Applied Physics Letters, 101, 071111(2012).
[37] A Prins, M Lewis, Z Bushell, et al. Evidence for a defect level above the conduction band edge of InAs/InAsSb type-II superlattices for applications in efficient infrared photodetectors. Applied Physics Letters, 106, 171111(2015).
[38] P Webster, N Riordan, S Liu, et al. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry. Applied Physics Letters, 106, 061907(2015).
[39] D Z Ting, A Soibel, S D Gunapala. Hole effective masses and subband splitting in type-II superlattice infrared detectors. Applied Physics Letters, 108, 183504(2016).
[40] D Z Ting, A Soibel, S D Gunapala. Type-II superlattice hole effective masses. Infrared Physics & Technology, 84, 102-106(2017).
[41] A Hoang, G Chen, R Chevallier, et al. High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection. Applied Physics Letters, 104, 251105(2014).
[42] I Vurgaftman, G Belenky, Y Lin, et al. Interband absorption strength in long-wave infrared type-II superlattices with small and large superlattice periods compared to bulk materials. Applied Physics Letters, 108, 222101(2016).
[43] N A Kotulak, J A Nolde, M B Katz, et al. Three-dimensional visualization of Sb segregation in InAs/InAsSb superlattices using atom probe tomography. Journal of Applied Physics, 128, 015302(2020).
[44] H Haugan, K Mahalingam, F Szmulowicz, et al. Quantitative study of the effect of deposition temperature on antimony incorporation in InAs/InAsSb superlattices. Journal of Crystal Growth, 436, 134-137(2016).
[45] Klipstein P, Avnon E, Benny Y, et al. InAsGaSb Type II superlattice barrier devices with a low dark current a highquantum efficiency[C]Proceedings of SPIE, 2014.
[46] Ting D Z, Soibel A, Khoshakhlagh A, et al. The emergence of InAsInAsSb typeII strained layer superlattice barrier infrared detects[C]Proceedings of SPIE, 2019.
[47] R Biefeld, K Baucom, S Kurtz. The growth of InAs1-xSbx/InAs strained-layer superlattices by metalorganic chemical vapot deposition. Journal of Crystal Growth, 137, 231-240(1994).
[48] Zhang Y H. InAsInAs x Sb1x TypeII Superlattice wave Infrared Lasers [M]. Boca Raton: CRC Press, 2019: 461500.
[49] D Lackner, O Pitts, M Steger, et al. Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 μ m. Applied Physics Letters, 95, 081906(2009).
[50] E Steenbergen, B Connelly, G Metcalfe, et al. Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb. Applied Physics Letters, 99, 251110(2011).
[51] D Zuo, R Liu, D Wasserman, et al. Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors. Applied Physics Letters, 106, 071107(2015).
[52] D Wu, Q Durlin, A Dehzangi, et al. High quantum efficiency mid-wavelength infrared type-II InAs/InAs1− xSbx superlattice photodiodes grown by metal-organic chemical vapor deposition. Applied Physics Letters, 114, 011104(2019).
[53] R Hao, Y Ren, S Liu, et al. Fabrication and characterization of high lattice matched InAs/InAsSb superlattice infrared photodetector. J Cryst Growth, 470, 33-36(2017).
[54] E Delli, V Letka, P D Hodgson, et al. Mid-infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon. Acs Photonics, 6, 538-544(2019).
[55] Q Durlin, J Perez, L Cerutti, et al. Midwave infrared barrier detector based on Ga-free InAs/InAsSb type-II superlattice grown by molecular beam epitaxy on Si substrate. Infrared Physics & Technology, 96, 39-43(2019).
[56] A Haddadi, G Chen, R Chevallier, et al. InAs/InAs1− xSbx type-II superlattices for high performance long wavelength infrared detection. Applied Physics Letters, 105, 121104(2014).
[57] A Haddadi, A Dehzangi, S Adhikary, et al. Background-limited long wavelength infrared InAs/InAs1− xSbx type-II superlattice-based photodetectors operating at 110 K. APL Materials, 5, 035502(2017).
[58] R Chevallier, A Haddadi, M Razeghi. Dark current reduction in microjunction-based double electron barrier type-II InAs/InAsSb superlattice long-wavelength infrared photodetectors. Scientific Reports, 7, 1-6(2017).
[59] K Michalczewski, P Martyniuk, C Wu, et al. Demonstration of HOT LWIR T2 SLs InAs/InAsSb photodetectors grown on GaAs substrate. Infrared Physics & Technology, 95, 222-226(2018).
[60] A Haddadi, R Chevallier, G Chen, et al. Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1− xSbx type-II superlattices. Applied Physics Letters, 106, 011104(2015).
[61] J M Fastenau, D Lubyshev, S A Nelson, et al. Direct MBE growth of metamorphic nBn infrared photodetectors on 150 mm Ge-Si substrates for heterogeneous integration. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 37, 031216(2019).
[62] Fastenau J M, Lubyshev D, Nelson S A, et al. GaSbbased infrared photodetect structures grown on GeSi substrates via metamphic buffers [C]Proceedings of SPIE, 2019.
[63] Wicks G, Savich G, Pedrazzani J, et al. Infrared detect epitaxial designs f suppression of surface leakage current [C]Proceedings of SPIE, 2010.
[64] E Yablonovitch, T Gmitter. Auger recombination in silicon at low carrier densities. Applied Physics Letters, 49, 587-590(1986).
[65] A Soibel, C J Hill, S A Keo, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors. Applied Physics Letters, 105, 023512(2014).
[66] K Hossain, L Höglund, L Phinney, et al. Hydrogenation defect passivation for improved minority carrier lifetime in midwavelength Ga-Free InAs/InAsSb superlattices. Journal of Electronic Materials, 45, 5626-5629(2016).
[67] Ting D Z, Hill C J, Seibel A, et al. High operating temperature barrier infrared detect with tailable cutoff wavelength [P]. US. Patent Application, 20100072514, 2015.
[68] D Z Ting, B Rafol, S A Keo, et al. InAs/InAsSb type-II superlattice mid-wavelength infrared focal plane array with significantly higher operating temperature than InSb. IEEE Photonics Journal, 10, 1-6(2018).
[69] H Wieder. Surface and interface barriers of In x Ga 1− x As binary and ternary alloys. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 21, 1915-1919(2003).
[70] A Jang, H-j Lee, Y C Kim, et al. Electrical characteristics of a Ga-free T2SL mid-wave infrared nBn detector based on an InAs/AlAsSb/InAsSb barrier. Journal of Electronic Materials, 4681-4688(202251).
[71] A D Hood, A J Evans, A Ikhlassi, et al. LWIR strained-layer superlattice materials and devices at Teledyne imaging sensors. Journal of Electronic Materials, 39, 1001-1006(2010).
[72] G Deng, D Chen, S Yang, et al. High operating temperature pBn barrier mid-wavelength infrared photodetectors and focal plane array based on InAs/InAsSb strained layer superlattices. Opt Express, 28, 17611(2020).
[73] L She, J Jiang, W Chen, et al. Mid-wave infrared p+-Bn InAs/InAsSb type-II superlattice photodetector with an AlAsSb/InAsSb superlattice barrier. Infrared Physics & Technology, 121, 104015(2022).
[74] B Marozas, W Hughes, X Du, et al. Surface dark current mechanisms in III-V infrared photodetectors. Optical Materials Express, 8, 1419-1424(2018).
[75] D Z Ting, A Soibel, A Khoshakhlagh, et al. Long wavelength InAs/InAsSb superlattice barrier infrared detectors with p-type absorber quantum efficiency enhancement. Applied Physics Letters, 118, 133503(2021).
[76] D Z Ting, A Khoshakhlagh, A Soibel, et al. Long and very long wavelength InAs/InAsSb superlattice complementary barrier infrared detectors. Journal of Electronic Materials, 4666-4674(202251).
[77] D Z Ting, S B Rafol, A Khoshakhlagh, et al. InAs/InAsSb Type-II strained-layer superlattice infrared photodetectors. Micromachines (Basel), 11, 958(2020).
[78] Z Deng, D Guo, J Huang, et al. Mid-wave infrared InAs/GaSb type-II superlattice photodetector with nBp design grown on GaAs substrate. IEEE Journal of Quantum Electronics, 55, 1-5(2019).
[79] P Klipstein, Y Livneh, A Glozman, et al. Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors. Journal of Electronic Materials, 43, 2984-2990(2014).
[80] L K Casias, C P Morath, E H Steenbergen, et al. Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material. Applied Physics Letters, 116, 182109(2020).
[81] Liu Z, Zhu L, Zhang D, et al. Recent progress in dark current suppression efficiency enhancement methods f antimonide superlattice detects [C]AOPC 2021: Infrared Device Infrared Technology, 2021, 12061: 344349.
[82] Ting D Z, Soibel A, Khoshakhlagh A, et al. Antimonide eSWIR, MWIR, LWIR barrier infrared detect focal plane array development [C]Proceedings of SPIE, 2018.
[83] D Wu, A Dehzangi, M Razeghi. Demonstration of mid-wavelength infrared nBn photodetectors based on type-II InAs/InAs1-xSbx superlattice grown by metal-organic chemical vapor deposition. Applied Physics Letters, 115, 061102(2019).
[84] D Wu, J Li, A Dehzangi, et al. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice. AIP Advances, 10, 025018(2020).
[85] G Deng, X Song, M Fan, et al. Upside-down InAs/InAs 1-x Sb x type-II superlattice-based nBn mid-infrared photodetectors with an AlGaAsSb quaternary alloy barrier. Optics Express, 28, 13616(2020).
[86] D Wu, J Li, A Dehzangi, et al. High performance InAs/InAsSb Type-II superlattice mid-wavelength infrared photodetectors with double barrier. Infrared Physics & Technology, 109, 103439(2020).
[87] Arounassalame V, Bouschet M, Alchaar R, et al. Electrooptical acterizations to study minity carrier transpt in Gafree InAsInAsSb T2SL XBn wave infrared photodetect; proceedings of the Electrooptical infrared systems [C]Proceedings of SPIE, 2021.
[88] A Soibel, D Z Ting, S B Rafol, et al. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density. Applied Physics Letters, 114, 161103(2019).
[89] R C Jones. A method of describing the detectivity of photoconductive cells. Review of Scientific Instruments, 24, 1035-1040(1953).
[90] G Ariyawansa, J Duran, C Reyner, et al. InAs/InAsSb strained-layer superlattice mid-wavelength infrared detector for high-temperature operation. Micromachines (Basel), 10, 806(2019).
[91] S Gunapala, S Rafol, D Ting, et al. Infrared digital focal plane arrays for earth remote sensing instruments. Multidisciplinary Digital Publishing Institute Proceedings, 27, 54(2019).
[92] A Dehzangi, D Wu, R Mcclintock, et al. Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation. Applied Physics Letters, 116, 221103(2020).
[93] Kim Y H, Lee H J, Kim Y C, et al. HOT InAsInAsSb nBn detect development f SWaP detect [C]Proceedings of SPIE, 2021.
[94] A Haddadi, A Dehzangi, R Chevallier, et al. Bias-selectable nBn dual-band long-/very long-wavelength infrared photodetectors based on InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices. Sci Rep, 7, 3379(2017).
[95] G Bishop, E Plis, J Rodriguez, et al. nBn detectors based on In As∕ Ga Sb type-II strain layer superlattice. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 26, 1145-1148(2008).
[96] Soibel A, Nguyen J, Khoshakhlagh A, et al. Highperfmance LWIR superlattice detects FPA based on CBIRD design[C]Proceedings of SPIE, 2012.
[97] N Gautam, S Myers, A V Barve, et al. Barrier engineered infrared photodetectors based on type-II InAs/GaSb strained layer superlattices. IEEE Journal of Quantum Electronics, 49, 211-217(2012).
[98] J Huang, Z Xie, Y Chen, et al. High speed mid-wave infrared uni-traveling carrier photodetector. IEEE Journal of Quantum Electronics, 56, 1-7(2020).
[99] Shi Y, Hu R, Deng G, Et Al. InAsGa (In) Sb typeII superlattices shtdle dual col infrared detects[C]Proceedings of SPIE, 2015.
[100] G Chen, A Haddadi, A M Hoang, et al. Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application. Opt Lett, 40, 45-7(2015).
[101] A Haddadi, M Razeghi. Bias-selectable three-color short-, extended-short-, and mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices. Opt Lett, 42, 4275-4280(2017).
[102] Kazemi A, Myers S, Taghipour Z, et al. High quantum efficiency wavelength infrared superlattice photodetect[C]Proceedings of SPIE, 2017.
[103] A Kazemi, S Myers, Z Taghipour, et al. Mid-wavelength infrared unipolar nBp superlattice photodetector. Infrared Physics & Technology, 88, 114-118(2018).
[104] V M More, Y Kim, J Jeon, et al. Dual-band unipolar barrier infrared photodetector based on InGaAsSb bulk and type-II InAs/GaSb superlattice absorbers. Journal of Alloys and Compounds, 868, 159195(2021).
[105] J Liu, H Zhu, H Zhu, et al. Long-wavelength InAs/GaSb superlattice double heterojunction infrared detectors using InPSb/InAs superlattice hole barrier. Semiconductor Science and Technology, 37, 055016(2022).
[106] Gunapala S, Ting D, Soibel A, et al. Antimonides T2SL wave longwave infrared focal plane arrays f Earth remote sensing applications[C]Proceedings of SPIE, 2020.
[107] X Du, G Savich, B Marozas, et al. Suppression of lateral diffusion and surface leakage currents in nBn photodetectors using an inverted design. Journal of Electronic Materials, 47, 1038-1044(2018).
[108] Yingjie He, P Zhenyu, C Xiancun, et al. Dual-color mid-mid-wavelength infrared InAs/InAsSb superlattice focal plane arrays. Journal of Infrared and Millimeter Waves, 41, 545-550(2022).
[109] Zavalaman U, Bouschet M, Perez JP, et al. Structural, optical electrical acterizations of wave infrared Gafree typeII InAsInAsSb superlattice barrier photodetects[C]proceedings of the Photonics MDPI, 2020.
[110] D Z Ting, A Khoshakhlagh, A Soibel, et al. Long wavelength InAs/InAsSb infrared superlattice challenges: A theoretical investigation. Journal of Electronic Materials, 49, 6936-6945(2020).
[111] P Klipstein. XBnn and XBpp infrared detectors. Journal of Crystal Growth, 425, 351-356(2015).
[112] D Sidor, G Savich, G Wicks. Surface leakage mechanisms in III–V infrared barrier detectors. Journal of Electronic Materials, 45, 4663-4667(2016).