• Nano-Micro Letters
  • Vol. 16, Issue 1, 050 (2024)
Min Zhang1, Aihui Cao2, Yucui Xiang1, Chaogang Ban1..., Guang Han3,4,*, Junjie Ding1, Li-Yong Gan1,4,5,** and Xiaoyuan Zhou1,4,5,***|Show fewer author(s)
Author Affiliations
  • 1College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, People’s Republic of China
  • 2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, People’s Republic of China
  • 3College of Materials Science and Engineering, Chongqing University, Chongqing 400044, People’s Republic of China
  • 4Institute of New Energy Storage Materials and Equipment, Chongqing, 401135, People’s Republic of China
  • 5State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01264-6 Cite this Article
    Min Zhang, Aihui Cao, Yucui Xiang, Chaogang Ban, Guang Han, Junjie Ding, Li-Yong Gan, Xiaoyuan Zhou. Strongly Coupled Ag/Sn–SnO2 Nanosheets Toward CO2 Electroreduction to Pure HCOOH Solutions at Ampere-Level Current[J]. Nano-Micro Letters, 2024, 16(1): 050 Copy Citation Text show less
    References

    [1] J. Ma, X. Xiong, D. Wu, Y. Wang, C. Ban et al., Band position-independent piezo-electrocatalysis for ultrahigh CO2 conversion. Adv. Mater. 35, 2300027 (2023).

    [2] B. Yang, K. Liu, H. Li, C. Lui, J. Fu et al., Accelerating CO2 electroreduction to multicarbon products via synergistic electric–thermal field on copper nanoneedles. J. Am. Chem. Soc. 144, 3039–3049 (2022).

    [3] Q. Wang, M. Dai, H. Li, Y. Lu, T. Chan et al., Asymmetric coordination induces electron localization at ca sites for robust CO2 electroreduction to CO. Adv. Mater. 35, 2300695 (2022).

    [4] H. Shin, K.U. Hansen, F. Jiao, Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    [5] J. Fan, X. Zhao, X. Mao, J. Xu, N. Han et al., Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion. Adv. Mater. 33, e2100910 (2021).

    [6] M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang et al., Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    [7] F.P. García de Arquer, C.T. Dinh, A. Ozden, J. Wicks, C. McCallum et al., CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    [8] C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang et al., Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    [9] M. Zhang, S. Zhou, W. Wei, D.-D. Ma, S.-G. Han et al., Few-atom-layer metallene quantum dots toward CO2 electroreduction at ampere-level current density and Zn-CO2 battery. Chem Catal. 2, 3528–3545 (2022).

    [10] M. Zhang, W. Wei, S. Zhou, D.-D. Ma, A. Cao et al., Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability. Energy Environ. Sci. 14, 4998–5008 (2021).

    [11] Y. Shi, Y. Ji, J. Long, Y. Liang, Y. Liu et al., Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 11, 3415 (2020).

    [12] H. Shang, T. Wang, J. Pei, Z. Jiang, D. Zhou et al., Design of a single-atom indiumδ+–N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem. Int. Ed. 59, 22465–22469 (2020).

    [13] L. Li, A. Ozden, S. Guo, A.D.A.F.P. Garci, C. Wang et al., Stable active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 12, 5223 (2021).

    [14] W. Wang, Z. Wang, R. Yang, J. Duan, Y. Liu et al., In Situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window. Angew. Chem. Int. Ed. 60, 22940–22947 (2021).

    [15] Y. Chen, M.W. Kanan, Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 134, 1986–1989 (2012).

    [16] W. Luc, C. Collins, S. Wang, H. Xin, K. He et al., Ag–Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 139, 1885–1893 (2017).

    [17] K. Ye, Z. Zhou, J. Shao, L. Lin, D. Gao et al., In situ reconstruction of a hierarchical Sn–Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem. Int. Ed. 59, 4814–4821 (2020).

    [18] H. Liu, B. Li, Z. Liu, Z. Liang, H. Chuai et al., Ceria-mediated dynamic Sn0/Snδ+ redox cycle for CO2 electroreduction. ACS Catal. 13, 5033–5042 (2023).

    [19] Y. Jiang, J. Shan, P. Wang, L. Huang, Y. Zheng et al., Stabilizing oxidation state of SnO2 for highly selective CO2 electroreduction to formate at large current densities. ACS Catal. 13, 3101–3108 (2023).

    [20] M. Chen, S. Wan, L. Zhong, D. Liu, H. Yang et al., Dynamic restructuring of Cu-Doped SnS2 nanoflowers for highly selective electrochemical CO2 reduction to formate. Angew. Chem. Int. Ed. 60, 26233–26237 (2021).

    [21] C. Chai, B. Liu, K. Liu, P. Li, J. Fu et al., Heteroatoms induce localization of the electric field and promote a wide potential-window selectivity towards CO in the CO2 electroreduction. Angew. Chem. Int. Ed. 61, e202212640 (2022).

    [22] T. Wang, J. Chen, X. Ren, J. Zhang, J. Ding et al., Halogen-incorporated Sn catalysts for selective electrochemical CO2 reduction to formate. Angew. Chem. Int. Ed. 62, e202211174 (2023).

    [23] S. Yan, C. Peng, C. Yang, Y. Chen, J. Zhang et al., Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem. Int. Ed. 60, 25741–25745 (2021).

    [24] M. Yu, G.H. Moon, R.G. Castillo, S. DeBeer, C. Weidenthaler et al., Dual role of silver moieties coupled with ordered mesoporous cobalt oxide towards electrocatalytic oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 16544–16552 (2020).

    [25] Q. Chen, K. Liu, Y. Zhou, X. Wang, K. Wu et al., Ordered Ag nanoneedle arrays with enhanced electrocatalytic CO2 reduction via structure-induced inhibition of hydrogen evolution. Nano Lett. 22, 6276–6284 (2022).

    [26] S.A. Chala, M.C. Tsai, W.N. Su, K.B. Ibrahim, B. Thirumalraj et al., Hierarchical 3D architectured Ag nanowires shelled with NiMn-layered double hydroxide as an efficient bifunctional oxygen electrocatalyst. ACS Nano 14, 1770–1782 (2020).

    [27] Z. Zhang, X. Li, C. Zhong, N. Zhao, Y. Deng et al., Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 7245–7250 (2020).

    [28] R. Gao, Z. Yang, L. Zheng, L. Gu, L. Liu et al., Enhancing the catalytic activity of Co3O4 for Li–O2 batteries through the synergy of surface/interface/doping engineering. ACS Catal. 8, 1955–1963 (2018).

    [29] H. Wu, F. Huang, J. Peng, Y. Cao, High-efficiency electron injection cathode of Au for polymer light-emitting devices. Org. Electron. 6, 118–128 (2005).

    [30] A.W. Dweydari, C.H.B. Mee, Work function measurements on (100) and (110) surfaces of silver. Phys. Status Solidi 27, 223–230 (1975).

    [31] Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen et al., Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020).

    [32] H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng et al., Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 593 (2020).

    [33] S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem. Int. Ed. 58, 13828–13833 (2019).

    [34] P. Zhu, H. Wang, High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 4, 943–951 (2021).

    [35] A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    [36] L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018).

    [37] N. Han, Y. Wang, J. Deng, J. Zhou, Y. Wu et al., Self-templated synthesis of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction. J. Mater. Chem. A 7, 1267–1272 (2019).

    [38] G. Kresse, J. Furthmüller, J. Ab initio molecular dynamics for liquid metals. Comp. Mater. Sci. 6, 15–50 (1996).

    [39] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    [40] P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    [41] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    [42] L. Zhang, W. Cai, N. Bao, H. Yang, Implanting an electron donor to enlarge the d-p hybridization of high-entropy (oxy)hydroxide: a novel design to boost oxygen evolution. Adv. Mater. 34, e2110511 (2022).

    [43] P. Wang, M. Qiao, Q. Shao, Y. Pi, X. Zhu et al., Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 9, 4933 (2018).

    [44] Q. Wang, K. Liu, K. Hu, C. Cai, H. Li et al., Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO. Nat. Commun. 13, 6082 (2022).

    [45] Y. Wang, C. Wang, Y. Wei, F. Wei, L. Kong et al., Efficient and selective electroreduction of CO2 to HCOOH over Bismuth-based bromide perovskites in acidic electrolytes. Chem. Eur. J. 28, e202201832 (2022).

    [46] J. Hao, Z. Zhuang, J. Hao, K. Cao, Y. Hu et al., Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 16, 3251–3263 (2022).

    [47] L. Fan, C. Xia, P. Zhu, Y. Lu, H. Wang, Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).

    Min Zhang, Aihui Cao, Yucui Xiang, Chaogang Ban, Guang Han, Junjie Ding, Li-Yong Gan, Xiaoyuan Zhou. Strongly Coupled Ag/Sn–SnO2 Nanosheets Toward CO2 Electroreduction to Pure HCOOH Solutions at Ampere-Level Current[J]. Nano-Micro Letters, 2024, 16(1): 050
    Download Citation