• Laser & Optoelectronics Progress
  • Vol. 62, Issue 3, 0314003 (2025)
Zijian Huang, Yang Li, Yongqiang Yang*, and Yilong Zhang
Author Affiliations
  • School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong , China
  • show less
    DOI: 10.3788/LOP241094 Cite this Article Set citation alerts
    Zijian Huang, Yang Li, Yongqiang Yang, Yilong Zhang. Forming Quality and Defects of Sn-Ag-Cu Alloy by Selective Laser Melting in Air Environment[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0314003 Copy Citation Text show less
    Sn-3.0Ag-0.5Cu powder morphology and size distribution. (a) Powder morphology; (b) size distribution
    Fig. 1. Sn-3.0Ag-0.5Cu powder morphology and size distribution. (a) Powder morphology; (b) size distribution
    Schematic of scanning strategy and tensile sample. (a) Scanning strategy; (b) tensile sample
    Fig. 2. Schematic of scanning strategy and tensile sample. (a) Scanning strategy; (b) tensile sample
    Sn-3.0Ag-0.5Cu forming samples
    Fig. 3. Sn-3.0Ag-0.5Cu forming samples
    Changes in density and various factors
    Fig. 4. Changes in density and various factors
    Energy density- density relationship of forming samples
    Fig. 5. Energy density- density relationship of forming samples
    Top-surface morphologies at different process parameters. (a) 20 W-1000 mm/s-0.09 mm; (b) 20 W-800 mm/s-0.07 mm; (c) 30 W-600 mm/s-0.07 mm; (d) 35 W-900 mm/s-0.06 mm; (e) 40 W-900 mm/s-0.07 mm; (f) 40 W-700 mm/s-0.05 mm
    Fig. 6. Top-surface morphologies at different process parameters. (a) 20 W-1000 mm/s-0.09 mm; (b) 20 W-800 mm/s-0.07 mm; (c) 30 W-600 mm/s-0.07 mm; (d) 35 W-900 mm/s-0.06 mm; (e) 40 W-900 mm/s-0.07 mm; (f) 40 W-700 mm/s-0.05 mm
    Microscope morphologies at different process parameters. (a) 20 W-1000 mm/s-0.09 mm; (b) 20 W-800 mm/s-0.07 mm; (c) 30 W-600 mm/s-0.07 mm; (d) 35 W-900 mm/s-0.06 mm; (e) 40 W-900 mm/s-0.07 mm; (f) 40 W-700 mm/s-0.05 mm
    Fig. 7. Microscope morphologies at different process parameters. (a) 20 W-1000 mm/s-0.09 mm; (b) 20 W-800 mm/s-0.07 mm; (c) 30 W-600 mm/s-0.07 mm; (d) 35 W-900 mm/s-0.06 mm; (e) 40 W-900 mm/s-0.07 mm; (f) 40 W-700 mm/s-0.05 mm
    Tensile properties at different powers. (a) Stress-strain curves; (b) tensile strength and elongation
    Fig. 8. Tensile properties at different powers. (a) Stress-strain curves; (b) tensile strength and elongation
    Fracture morphologies at different Laser powers. (a) 25 W; (b) 30 W; (c) 35 W; (d) 40 W
    Fig. 9. Fracture morphologies at different Laser powers. (a) 25 W; (b) 30 W; (c) 35 W; (d) 40 W
    Surface and internal morphology of samples in different environments. (a) Surface morphology with protective atmosphere; (b) surface morphology without protective atmosphere; (c) internal morphology with protective atmosphere; (d) internal morphology without protective atmosphere
    Fig. 10. Surface and internal morphology of samples in different environments. (a) Surface morphology with protective atmosphere; (b) surface morphology without protective atmosphere; (c) internal morphology with protective atmosphere; (d) internal morphology without protective atmosphere
    XRD patterns of samples in different environments
    Fig. 11. XRD patterns of samples in different environments
    SEM images of samples in different environments. (a) With protective atmosphere; (b) without protective atmosphere
    Fig. 12. SEM images of samples in different environments. (a) With protective atmosphere; (b) without protective atmosphere
    EDS images of samples in different environments. (a) With protective atmosphere; (b) without protective atmosphere
    Fig. 13. EDS images of samples in different environments. (a) With protective atmosphere; (b) without protective atmosphere
    Mechanism of spatter generation
    Fig. 14. Mechanism of spatter generation
    Spatter generation and residue during the forming process. (a) Spatter generation; (b) spatter residue after paving
    Fig. 15. Spatter generation and residue during the forming process. (a) Spatter generation; (b) spatter residue after paving
    SEM image of top surface of sample in air atmosphere
    Fig. 16. SEM image of top surface of sample in air atmosphere
    Influence of spatter on forming and paving. (a) Paving of the first layer; (b) residue of spatter; (c) non-fusion powder caused by spatter; (d) spatter effects on paving roller
    Fig. 17. Influence of spatter on forming and paving. (a) Paving of the first layer; (b) residue of spatter; (c) non-fusion powder caused by spatter; (d) spatter effects on paving roller
    ComponentSnAgCuSbInPbBi
    Mass fraction /%Bal.2.98170.48560.01110.00630.00570.0026
    Table 1. Chemical composition of Sn-3.0Ag-0.5Cu powder
    FactorLaser powerP /WScanning speedV /(mm/s)Hatch spacingS /mm
    1206000.05
    2257000.06
    3308000.07
    4359000.08
    54010000.09
    Table 2. Factor level table
    NumberP /WV /(mm/s)S /mmRelative density /%
    1206000.0590.40
    2207000.0692.48
    3208000.0786.77
    4209000.0881.21
    52010000.0978.60
    6256000.0694.96
    7257000.0791.59
    8258000.0891.88
    9259000.0993.29
    102510000.0593.50
    11306000.0792.53
    12307000.0894.37
    13308000.0992.69
    14309000.0595.85
    153010000.0693.37
    16356000.0897.15
    17357000.0996.28
    18358000.0596.77
    19359000.0696.24
    203510000.0796.46
    21406000.0996.95
    22407000.0597.94
    23408000.0697.79
    24409000.0797.02
    254010000.0897.15
    Table 3. Density test results
    FactorA (PB (VC (S
    K¯1Y85.8994.4094.89
    K¯2Y93.0494.5394.97
    K¯3Y93.7693.1892.87
    K¯4Y96.5892.7292.35
    K¯5Y97.3791.8291.56
    Range RY11.482.723.41
    Optimal levelA5B2C2
    Order132
    Table 4. Range analysis result of density
    AtmosphereDensity /%Tensile strength /MPaElongation /%
    Ar99.12±0.0488.54±1.598.07±0.60
    Air97.02±0.7387.78±2.914.50±0.30
    Table 5. Density and mechanical properties of samples in different environments
    Zijian Huang, Yang Li, Yongqiang Yang, Yilong Zhang. Forming Quality and Defects of Sn-Ag-Cu Alloy by Selective Laser Melting in Air Environment[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0314003
    Download Citation