[5] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[6] Xia F N, Wang H, Xiao D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12): 899-907.
[7] Xia F N, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839-843.
[8] Li X M, Zhu H W, Wang K L, et al. Graphene-on-silicon Schottky junction solar cells[J]. Adv. Materials (Weinheim), 2010, 22(25): 2743-2748.
[9] An X H, Liu F Z, Jung Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection[J]. Nano Lett., 2013, 13(3): 909-916.
[10] Liu F Z, Kar S. Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions[J]. ACS Nano, 2014, 8(10): 10270-10279.
[11] Guo X T, Wang W H, Nan H Y, et al. High-performance graphene photodetector using interfacial gating[J]. Optica, 2016, 3(10): 1066-1070.
[12] Chen Z F, Cheng Z Z, Wang J Q, et al. High responsivity, broadband and fast graphene/silicon photodetector in photoconductor mode[J]. Adv. Optical Materials, 2015, 3(9): 1207-1214.
[13] Liu J J, Yin Y L, Yu L H, et al. Silicon-graphene conductive photodetector with ultra-high responsivity[J]. Scientific Reports, 2017, 7(1): 40904.
[14] Riazimehr S, Kataria S, Gonzalez-Medina J M, et al. High responsivity and quantum efficiency of graphene/silicon photodiodes achieved by interdigitating Schottky and gated regions[J]. ACS Photonics, 2019, 6(1): 107-115.