• Chinese Journal of Lasers
  • Vol. 52, Issue 6, 0601005 (2025)
Yue Song1, Zhenzhen Yu1,2, Shiguang Li1, Sheng Zhang1..., Mingjian Wang1,2, Yuncheng Xu3,*, Xia Hou1,2,** and Weibiao Chen1,2|Show fewer author(s)
Author Affiliations
  • 1Wang Zhijiang Innovation Center for Laser, Aerospace Laser Technology and System Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Chinese People’s Liberation Army Military Space Force, Beijing 100080, China
  • show less
    DOI: 10.3788/CJL241165 Cite this Article Set citation alerts
    Yue Song, Zhenzhen Yu, Shiguang Li, Sheng Zhang, Mingjian Wang, Yuncheng Xu, Xia Hou, Weibiao Chen. 972 nm Nanosecond Pulsed Laser Based on Ring‐Cavity KTA Optical Parametric Oscillator[J]. Chinese Journal of Lasers, 2025, 52(6): 0601005 Copy Citation Text show less
    References

    [1] Cheng J, Liu C S, Shang S et al. A review of ultrafast laser materials micromachining[J]. Optics & Laser Technology, 46, 88-102(2013).

    [2] Phillips K C, Gandhi H H, Mazur E et al. Ultrafast laser processing of materials: a review[J]. Advances in Optics and Photonics, 7, 684-712(2015).

    [3] Serebryakov V A, Boĭko É V, Petrishchev N N et al. Medical applications of mid-IR lasers. Problems and prospects[J]. Journal of Optical Technology, 77, 6-17(2010).

    [4] Danekar K, Khademian A, Shiner D. Blue laser via IR resonant doubling with 71% fiber to fiber efficiency[J]. Optics Letters, 36, 2940-2942(2011).

    [5] Wu T C, Chi Y C, Wang H Y et al. Blue laser diode enables underwater communication at 12.4 Gbps[J]. Scientific Reports, 7, 40480(2017).

    [6] Eichler H J, Kallmeyer F, Rhee H et al. Efficient laser systems for 935 and 942 nm for water vapor lidar[J]. Proceedings of SPIE, 6346, 63460Y(2006).

    [7] Fix A, Ehret G, Löhring J et al. Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm[J]. Applied Physics B, 102, 905-915(2011).

    [8] Yang T Y, Lin Y Y, Lin S T et al. Cascaded mode-locked Nd∶YVO4 laser using MgO doped periodically-poled LiNbO3 with direct in-band diode pumping at 914 nm[J]. IEEE Photonics Journal, 14, 1557906(2022).

    [9] Nadimi M, Waritanant T, Major A. High power and beam quality continuous-wave Nd∶GdVO4 laser in-band diode-pumped at 912 nm[J]. Photonics Research, 5, 346-349(2017).

    [10] Liu Q, Liu C, Zhu X L et al. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J]. Chinese Optics, 13, 148-155(2020).

    [11] Jaafar A N, Ja’afar H, Pasya I et al. Overview of underwater communication technology[M]. Proceedings of the 12th National Technical Seminar on Unmanned System Technology 2020, 770, 93-104(2021).

    [12] Ma J, Zhu X L, Lu T T et al. Research on pulsed blue laser with high peak power for ocean applications[J]. Acta Optica Sinica, 42, 1714002(2022).

    [13] Zhang J L, Ma J, Lu T T et al. 16.9 MW, efficient 486.1 nm blue optical parametric oscillator using single BBO crystal[J]. Laser Physics Letters, 18, 025001(2021).

    [14] Fu F X, Lu Y X. High peak power electro-optical cavity-dumped laser at 946 nm based on pulse LD side-pumped Nd∶YAG[J]. Integrated Ferroelectrics, 219, 62-68(2021).

    [15] Florentin R, le Corre K, Robin T et al. Optimization of Nd-doped LMA fibers for high-power laser emission near 915 nm[J]. IEEE Photonics Journal, 16, 1500706(2024).

    [16] Cole B J, Chinn S, Goldberg L. Near-IR, blue, and UV generation by frequency conversion of a Tm∶YAP laser[J]. Proceedings of SPIE, 10511, 1051112(2018).

    [17] Chinn S R, Goldberg L, King V et al. Experimental and modeled output characteristics of a compact, passively Q-switched Tm∶YLF laser[J]. IEEE Journal of Quantum Electronics, 59, 1700208(2023).

    [18] Wang Y Q, Zhu X L, Lu T T et al. Frequency-doubling blue laser technology with singly-resonant optical parametric oscillator pumped by 532 nm laser[J]. Chinese Journal of Lasers, 50, 2201007(2023).

    [19] Vainio M, Ozanam C, Ulvila V et al. Tuning and stability of a singly resonant continuous-wave optical parametric oscillator close to degeneracy[J]. Optics Express, 19, 22515-22527(2011).

    [20] Granot E, Pearl S, Tilleman M M. Analytical solution for a lossy singly resonant optical parametric oscillator[J]. Journal of the Optical Society of America B, 17, 381-386(2000).

    [21] Kane T J, Byer R L. Monolithic, unidirectional single-mode Nd∶YAG ring laser[J]. Optics Letters, 10, 65-67(1985).

    [22] Nikogosyan D N[M]. Nonlinear optical crystals: a complete survey, 5-215(2006).

    Yue Song, Zhenzhen Yu, Shiguang Li, Sheng Zhang, Mingjian Wang, Yuncheng Xu, Xia Hou, Weibiao Chen. 972 nm Nanosecond Pulsed Laser Based on Ring‐Cavity KTA Optical Parametric Oscillator[J]. Chinese Journal of Lasers, 2025, 52(6): 0601005
    Download Citation