• Nano-Micro Letters
  • Vol. 16, Issue 1, 253 (2024)
Jin-Biao Zhang1,4, Yi-Bo Tian1, Zhi-Gang Gu1,2,3,*, and Jian Zhang1,2,3
Author Affiliations
  • 1State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
  • 2College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007 Fujian, People’s Republic of China
  • 3Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 Fujian, People’s Republic of China
  • 4University of Chinese Academy of Science, Beijing, 100049, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01465-7 Cite this Article
    Jin-Biao Zhang, Yi-Bo Tian, Zhi-Gang Gu, Jian Zhang. Metal–Organic Framework-Based Photodetectors[J]. Nano-Micro Letters, 2024, 16(1): 253 Copy Citation Text show less
    References

    [1] Y. Zhao, X. Yin, P. Li, Z. Ren, Z. Gu et al., Multifunctional perovskite photodetectors: from molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nano-Micro Lett. 15, 187 (2023).

    [2] C.L. Tan, H. Mohseni, Emerging technologies for high performance infrared detectors. Nanophotonics 7, 169–197 (2018).

    [3] K. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu et al., Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photonics 11, 63–68 (2017).

    [4] M. Ding, K. Liang, S. Yu, X. Zhao, H. Ren et al., Aqueous-printed Ga2O3 films for high-performance flexible and heat-resistant deep ultraviolet photodetector and array. Adv. Opt. Mater. 10, 2200512 (2022).

    [5] J. Xu, W. Zheng, F. Huang, Gallium oxide solar-blind ultraviolet photodetectors: a review. J. Mater. Chem. C 7, 8753–8770 (2019).

    [6] C.-Y. Li, J. He, Y. Zhou, D.-X. Qi, H. Jing et al., Flexible perovskite nanosheet-based photodetectors for ultraviolet communication applications. Appl. Phys. Lett. 119, 251105 (2021).

    [7] T. Ouyang, X. Zhao, X. Xun, F. Gao, B. Zhao et al., Boosting charge utilization in self-powered photodetector for real-time high-throughput ultraviolet communication. Adv. Sci. 10, e2301585 (2023).

    [8] T. Agostinelli, M. Campoy-Quiles, J.C. Blakesley, R. Speller, D.D.C. Bradley et al., A polymer/fullerene based photodetector with extremely low dark current for X-ray medical imaging applications. Appl. Phys. Lett. 93, 203305 (2008).

    [9] D. Palaferri, Y. Todorov, A. Bigioli, A. Mottaghizadeh, D. Gacemi et al., Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature 556, 85–88 (2018).

    [10] J. Oliveira, V. Correia, E. Sowade, I. Etxebarria, R.D. Rodriguez et al., Indirect X-ray detectors based on inkjet-printed photodetectors with a screen-printed scintillator layer. ACS Appl. Mater. Interfaces 10, 12904–12912 (2018).

    [11] C. Xie, F. Yan, Flexible photodetectors based on novel functional materials. Small 13, 1701822 (2017).

    [12] D. Yang, D. Ma, Development of organic semiconductor photodetectors: from mechanism to applications. Adv. Opt. Mater. 7, 1800522 (2019).

    [13] X. Zhu, F. Lin, Z. Zhang, X. Chen, H. Huang et al., Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron-hole tube structure. Nano Lett. 20, 2654–2659 (2020).

    [14] F. Teng, K. Hu, W. Ouyang, X. Fang, Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater. 30, e1706262 (2018).

    [15] J. Zheng, H. Chong, L. Wang, S. Chen, W. Yang et al., A robust SiC nanoarray blue-light photodetector. J. Mater. Chem. C 8, 6072–6078 (2020).

    [16] Q. Gao, Z. Jin, L. Qu, Z. Shao, X. Liu et al., CuO Nanosheets for Use in Photoelectrochemical Photodetectors. ACS Appl. Nano Mater. 6, 784–791 (2023).

    [17] Z. Gao, H. Zhou, K. Dong, C. Wang, J. Wei et al., Defect passivation on lead-free CsSnI3 perovskite nanowires enables high-performance photodetectors with ultra-high stability. Nano-Micro Lett. 14, 215 (2022).

    [18] J. Pan, W. Deng, X. Xu, T. Jiang, X. Zhang et al., Photodetectors based on small-molecule organic semiconductor crystals. Chin. Phys. B 28, 038102 (2019).

    [19] Z. Zhao, C. Xu, L. Niu, X. Zhang, F. Zhang, Recent progress on broadband organic photodetectors and their applications. Laser Photonics Rev. 14, 2000262 (2020).

    [20] Y.-q Zheng, Y.-j Chen, X.-z Zhu, Research progress of near-infrared organic photovoltaic photodetectors. Acta Polym Sin. 53, 354–373 (2022).

    [21] L. Shi, Q. Liang, W. Wang, Y. Zhang, G. Li et al., Research progress in organic photomultiplication photodetectors. Nanomaterials 8, 713 (2018).

    [22] D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O’Keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev. 38, 1257–1283 (2009).

    [23] M. O’Keeffe, O.M. Yaghi, Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012).

    [24] S. Natarajan, P. Mahata, Metal–organic framework structures–how closely are they related to classical inorganic structures? Chem. Soc. Rev. 38, 2304–2318 (2009).

    [25] Z. Wang, S.M. Cohen, Postsynthetic covalent modification of a neutral metal−organic framework. J. Am. Chem. Soc. 129, 12368–12369 (2007).

    [26] K.K. Tanabe, Z. Wang, S.M. Cohen, Systematic functionalization of a metal-organic framework via a postsynthetic modification approach. J. Am. Chem. Soc. 130, 8508–8517 (2008).

    [27] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    [28] P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke et al., Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    [29] J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    [30] Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal–organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 (2023).

    [31] L. Zhu, X.-Q. Liu, H.-L. Jiang, L.-B. Sun, Metal–organic frameworks for heterogeneous basic catalysis. Chem. Rev. 117, 8129–8176 (2017).

    [32] Q. Yang, Q. Xu, H.-L. Jiang, Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem. Soc. Rev. 46, 4774–4808 (2017).

    [33] M.J. Katz, S.-Y. Moon, J.E. Mondloch, M.H. Beyzavi, C.J. Stephenson et al., Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2. Chem. Sci. 6, 2286–2291 (2015).

    [34] F. He, Y. Liu, X. Yang, Y. Chen, C.-C. Yang et al., Accelerating oxygen electrocatalysis kinetics on metal-organic frameworks via bond length optimization. Nano-Micro Lett. 16, 175 (2024).

    [35] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne et al., Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    [36] B.A. Webb, M. Chimenti, M.P. Jacobson, D.L. Barber, Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).

    [37] R. Li, T. Chen, X. Pan, Metal–organic-framework-based materials for antimicrobial applications. ACS Nano 15, 3808–3848 (2021).

    [38] P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle et al., Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006).

    [39] A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang et al., Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    [40] L.-X. Shao, S.-J. Li, L. Feng, X.-L. Pei, X.-J. Yu et al., Layer-by-layer growth of ferrocene decorated metal–organic framework thin films and studies of their electrochemical properties. Appl. Surf. Sci. 596, 153525 (2022).

    [41] W. Xie, W. Deng, J. Hu, D. Li, Y. Gai et al., Construction of Ferrocene-based bimetallic CoFe-FcDA nanosheets for efficient oxygen evolution reaction. Mol. Catal. 528, 112502 (2022).

    [42] S.G.F. de Assis, G.C. Santos, A.B.S. Santos, E.H.L. Falcão, R. da Silva Viana et al., Design of new europium-doped luminescent MOFs for UV radiation dosimetric sensing. J. Solid State Chem. 276, 309–318 (2019).

    [43] X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15, 148 (2023).

    [44] W. Zhuge, Y. Liu, W. Huang, C. Zhang, L. Wei et al., Conductive 2D phthalocyanine-based metal-organic framework as a photoelectrochemical sensor for N-acetyl-L-cysteine detection. Sens. Actuat. B Chem. 367, 132028 (2022).

    [45] M.-J. Li, H.-J. Wang, R. Yuan, Y.-Q. Chai, A zirconium-based metal-organic framework sensitized by thioflavin-T for sensitive photoelectrochemical detection of C-reactive protein. Chem. Commun. 55, 10772–10775 (2019).

    [46] H. Liu, C. Xu, D. Li, H.-L. Jiang, Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem. Int. Ed. Engl. 57, 5379–5383 (2018).

    [47] P. Sippel, D. Denysenko, A. Loidl, P. Lunkenheimer, G. Sastre et al., Dielectric relaxation processes, electronic structure, and band gap engineering of MFU-4-type metal-organic frameworks: towards a rational design of semiconducting microporous materials. Adv. Funct. Mater. 24, 3885–3896 (2014).

    [48] C.H. Hendon, D. Tiana, M. Fontecave, C. Sanchez, L. D’arras et al., Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization. J. Am. Chem. Soc. 135, 10942–10945 (2013).

    [49] X. Ma, J. Kang, Y. Wu, C. Pang, S. Li et al., Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trac Trends Anal. Chem. 157, 116793 (2022).

    [50] X. Shang, I. Song, G.Y. Jung, W. Choi, H. Ohtsu et al., Micro-/ nano-sized multifunctional heterochiral metal–organic frameworks for high-performance visible–blind UV photodetectors. J. Mater. Chem. C 9, 7310–7318 (2021).

    [51] M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi et al., A review on metal-organic frameworks: synthesis and applications. Trac Trends Anal. Chem. 118, 401–425 (2019).

    [52] Y. Sun, H.-C. Zhou, Recent progress in the synthesis of metal-organic frameworks. Sci. Technol. Adv. Mater. 16, 3450–3458 (2015).

    [53] Z. Cao, R. Momen, S. Tao, D. Xiong, Z. Song et al., Metal–organic framework materials for electrochemical supercapacitors. Nano-Micro Lett. 14, 181 (2022).

    [54] F. Yu, T. Du, Y. Wang, C. Li, Z. Qin et al., Ratiometric fluorescence sensing of UiO-66-NH2 toward hypochlorite with novel dual emission in vitro and in vivo. Sens. Actuat. B Chem. 353, 131032 (2022).

    [55] Y.-F. Han, X.-M. Xu, S.-H. Wang, W.-F. Wang, M.-S. Wang et al., Reusable radiochromic semiconductive MOF for dual-mode X-ray detection using color change and electric signal. Chem. Eng. J. 437, 135468 (2022).

    [56] C. Liang, L. Cheng, S. Zhang, S. Yang, W. Liu et al., Boosting the optoelectronic performance by regulating exciton behaviors in a porous semiconductive metal-organic framework. J. Am. Chem. Soc. 144, 2189–2196 (2022).

    [57] D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 13 (2020).

    [58] D. Adekoya, M. Li, M. Hankel, C. Lai, M.-S. Balogun et al., Design of a 1D/2D C3N4/rGO composite as an anode material for stable and effective potassium storage. Energy Storage Mater. 25, 495–501 (2020).

    [59] R. Seetharaj, P.V. Vandana, P. Arya, S. Mathew, Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian J. Chem. 12, 295–315 (2019).

    [60] O.M. Yaghi, Reticular chemistry—construction, properties, and precision reactions of frameworks. J. Am. Chem. Soc. 138, 15507–15509 (2016).

    [61] K. Otsubo, H. Kitagawa, Metal–organic framework thin films with well-controlled growth directions confirmed by X-ray study. APL Mater. 2, 124105 (2014).

    [62] V. Stavila, A.A. Talin, M.D. Allendorf, MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014).

    [63] M.D. Allendorf, A. Schwartzberg, V. Stavila, A.A. Talin, A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. Chemistry 17, 11372–11388 (2011).

    [64] I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf et al., An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017).

    [65] M. Usman, S. Mendiratta, K.-L. Lu, Semiconductor metal-organic frameworks: future low-bandgap materials. Adv. Mater. 29, 1605071 (2017).

    [66] H. Liu, Y. Wang, Z. Qin, D. Liu, H. Xu et al., Electrically conductive coordination polymers for electronic and optoelectronic device applications. J. Phys. Chem. Lett. 12, 1612–1630 (2021).

    [67] M. Zhao, Q. Lu, Q. Ma, H. Zhang, Two-dimensional metal–organic framework nanosheets. Small Meth. 1, 1600030 (2017).

    [68] M. Wang, X. Dong, Z. Meng, Z. Hu, Y.-G. Lin et al., An efficient interfacial synthesis of two-dimensional metal–organic framework nanosheets for electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 60, 11190–11195 (2021).

    [69] Y.-B. Tian, N. Vankova, P. Weidler, A. Kuc, T. Heine et al., Oriented growth of In-oxo chain based metal-porphyrin framework thin film for high-sensitive photodetector. Adv. Sci. 8, 2100548 (2021).

    [70] S. Ghafari, N. Naderi, M.J. Eshraghi, M. Kazemzad, Temperature-dependent photonic properties of porous-shaped metal-organic frameworks on porous silicon substrates. Sens. Actuat. A Phys. 337, 113443 (2022).

    [71] J. Peng, X. Sun, Y. Li, C. Huang, J. Jin et al., Controllable growth of ZIF-8 layers with nanometer-level precision on SiO2 nano-powders via liquid phase epitaxy stepwise growth approach. Microporous Mesoporous Mater. 268, 268–275 (2018).

    [72] S. Wannapaiboon, K. Sumida, K. Dilchert, M. Tu, S. Kitagawa et al., Enhanced properties of metal-organic framework thin films fabricated via a coordination modulation-controlled layer-by-layer process. J. Mater. Chem. A 5(26), 13665–13673 (2017).

    [73] R. Zheng, Z.-H. Fu, W.-H. Deng, Y. Wen, A.-Q. Wu et al., The growth mechanism of a conductive MOF thin film in spray-based layer-by-layer liquid phase epitaxy. Angew. Chem. Int. Ed. 61, e202212797 (2022).

    [74] A.L. Semrau, R.A. Fischer, High-quality thin films of UiO-66-NH2 by coordination modulated layer-by-layer liquid phase epitaxy. Chemistry 27, 8509–8516 (2021).

    [75] M. Usman, M. Ali, B.A. Al-Maythalony, A.S. Ghanem, O.W. Saadi et al., Highly efficient permeation and separation of gases with metal-organic frameworks confined in polymeric nanochannels. ACS Appl. Mater. Interfaces 12(44), 49992–50001 (2020).

    [76] A.L. Semrau, S. Wannapaiboon, S.P. Pujari, P. Vervoorts, B. Albada et al., Highly porous nanocrystalline UiO-66 thin films via coordination modulation controlled step-by-step liquid-phase growth. Cryst. Growth Des. 19, 1738–1747 (2019).

    [77] W. Guo, M. Zha, Z. Wang, E. Redel, Z. Xu et al., Improving the loading capacity of metal-organic framework thin films using optimized linkers. ACS Appl. Mater. Interfaces 8, 24699–24702 (2016).

    [78] B. Liu, R.A. Fischer, Liquid-phase epitaxy of metal organic framework thin films. Sci. China Chem. 54, 1851–1866 (2011).

    [79] L.-A. Cao, M.-S. Yao, H.-J. Jiang, S. Kitagawa, X.-L. Ye et al., A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection. J. Mater. Chem. A 8, 9085–9090 (2020).

    [80] C.-K. Liu, V. Piradi, J. Song, Z. Wang, L.-W. Wong et al., 2D metal-organic framework Cu3 (HHTT)2 films for broadband photodetectors from ultraviolet to mid-infrared. Adv. Mater. 34, e2204140 (2022).

    [81] S. Han, C.B. Mullins, Current progress and future directions in gas-phase metal-organic framework thin-film growth. Chemsuschem 13, 5433–5442 (2020).

    [82] M. Choe, J.Y. Koo, I. Park, H. Ohtsu, J.H. Shim et al., Chemical vapor deposition of edge-on oriented 2D conductive metal–organic framework thin films. J. Am. Chem. Soc. 144, 16726–16731 (2022).

    [83] K.P. Bera, Y.-G. Lee, M. Usman, R. Ghosh, K.-L. Lu et al., Dirac point modulated self-powered ultrasensitive photoresponse and color-tunable electroluminescence from flexible graphene/metal–organic frameworks/graphene vertical phototransistor. ACS Appl. Electron. Mater. 4, 2337–2345 (2022).

    [84] K.P. Bera, G. Haider, M. Usman, P.K. Roy, H.-I. Lin et al., Trapped photons induced ultrahigh external quantum efficiency and photoresponsivity in hybrid graphene/metal-organic framework broadband wearable photodetectors. Adv. Funct. Mater. 28, 1804802 (2018).

    [85] C. Kang, M. Ahsan Iqbal, S. Zhang, X. Weng, Y. Sun et al., Cu3 (HHTP)2 c-MOF/ZnO ultrafast ultraviolet photodetector for wearable optoelectronics. Chemistry 28, e202201705 (2022).

    [86] T. Guo, C. Ling, X. Li, X. Qiao, X. Li et al., A ZIF-8@H: ZnO core–shell nanorod arrays/Si heterojunction self-powered photodetector with ultrahigh performance. J. Mater. Chem. C 7, 5172–5183 (2019).

    [87] H. Kim, W. Kim, J. Park, N. Lim, R. Lee et al., Surface conversion of ZnO nanorods to ZIF-8 to suppress surface defects for a visible-blind UV photodetector. Nanoscale 10, 21168–21177 (2018).

    [88] B.D. Milbrath, A.J. Peurrung, M. Bliss, W.J. Weber, Radiation detector materials: an overview. J. Mater. Res. 23, 2561–2581 (2008).

    [89] A. Sakdinawat, D. Attwood, Nanoscale X-ray imaging. Nat. Photonics 4, 840–848 (2010).

    [90] L. Cheng, C. Liang, B. Li, H. Qin, P. Mi et al., Millimeter-scale semiconductive metal-organic framework single crystal for X-ray imaging. Cell Rep. Phys. Sci. 3, 101004 (2022).

    [91] A.B. de González, S. Darby, Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363, 345–351 (2004).

    [92] H. Chen, J. Chen, M. Li, M. You, Q. Chen et al., Recent advances in metal-organic frameworks for X-ray detection. Sci. China Chem. 65, 2338–2350 (2022).

    [93] S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani et al., Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11, 5112–5157 (2011).

    [94] C. Wang, O. Volotskova, K. Lu, M. Ahmad, C. Sun et al., Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal-organic frameworks for highly efficient X-ray scintillation. J. Am. Chem. Soc. 136, 6171–6174 (2014).

    [95] J. Perego, I. Villa, A. Pedrini, E.C. Padovani, R. Crapanzano et al., Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals. Nat. Photonics 15, 393–400 (2021).

    [96] W.-F. Wang, J. Lu, X.-M. Xu, B.-Y. Li, J. Gao et al., Sensitive X-ray detection and imaging by a scintillating Lead(II)-based Metal-Organic framework. Chem. Eng. J. 430, 133010 (2022).

    [97] J. Lu, X.-H. Xin, Y.-J. Lin, S.-H. Wang, J.-G. Xu et al., Efficient X-ray scintillating lead(II)-based MOFs derived from rigid luminescent naphthalene motifs. Dalton Trans. 48, 1722–1731 (2019).

    [98] J. Lu, J. Gao, W.-F. Wang, B.-Y. Li, P.-X. Li et al., Barium-based scintillating MOFs for X-ray dosage detection with intrinsic energy resolution via luminescent multidentate naphthalene disulfonate moieties. J. Mater. Chem. C 9, 5615–5620 (2021).

    [99] J. Lu, S.-H. Wang, Y. Li, W.-F. Wang, C. Sun et al., Heat-resistant Pb(II)-based X-ray scintillating metal-organic frameworks for sensitive dosage detection via an aggregation-induced luminescent chromophore. Dalton Trans. 49, 7309–7314 (2020).

    [100] Y. Wang, X. Liu, X. Li, F. Zhai, S. Yan et al., Direct radiation detection by a semiconductive metal-organic framework. J. Am. Chem. Soc. 141, 8030–8034 (2019).

    [101] C. Liang, S. Zhang, L. Cheng, J. Xie, F. Zhai et al., Thermoplastic membranes incorporating semiconductive metal-organic frameworks: an advance on flexible X-ray detectors. Angew. Chem. Int. Ed. 59, 11856–11860 (2020).

    [102] Z. Li, S. Chang, H. Zhang, Y. Hu, Y. Huang et al., Flexible lead-free X-ray detector from metal-organic frameworks. Nano Lett. 21, 6983–6989 (2021).

    [103] J. Yu, R. Anderson, X. Li, W. Xu, S. Goswami et al., Improving energy transfer within metal-organic frameworks by aligning linker transition dipoles along the framework axis. J. Am. Chem. Soc. 142, 11192–11202 (2020).

    [104] S. Li, Y. Zhang, W. Yang, H. Liu, X. Fang, 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv. Mater. 32, 1905443 (2020).

    [105] M.A. Abu Talip, N.S. Khairir, R. Ab Kadir, M.H. Mamat, R.A. Rani et al., Nanotubular Ta2O5 as ultraviolet (UV) photodetector. J. Mater. Sci. Mater. Electron. 30(5), 4953–4966 (2019).

    [106] S.M. Hatch, J. Briscoe, S. Dunn, A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response. Adv. Mater. 25, 867–871 (2013).

    [107] K.E. Smedby, H. Hjalgrim, M. Melbye, A. Torrång, K. Rostgaard et al., Ultraviolet radiation exposure and risk of malignant lymphomas. J. Natl. Cancer Inst. 97, 199–209 (2005).

    [108] L.M. Henao, J.J. Mendez, M.H. Bernal, UVB radiation enhances the toxic effects of three organophosphorus insecticides on tadpoles from tropical anurans. Hydrobiologia 849, 141–153 (2022).

    [109] X. Li, Y. Wang, J. Xie, X. Yin, M.A. Silver et al., Monitoring ultraviolet radiation dosage based on a luminescent lanthanide metal-organic framework. Inorg. Chem. 57, 8714–8717 (2018).

    [110] T.M.H. Nguyen, C.W. Bark, Self-powered UVC photodetector based on europium metal–organic framework for facile monitoring invisible fire. ACS Appl. Mater. Interfaces 14, 45573–45581 (2022).

    [111] S. Ying, Z. Ma, Z. Zhou, R. Tao, K. Yan et al., Device based on polymer Schottky junctions and their applications: a review. IEEE Access 8, 189646–189660 (2020).

    [112] B. Ezhilmaran, A. Patra, S. Benny, M.R. Sreelakshmi, V.V. Akshay et al., Recent developments in the photodetector applications of Schottky diodes based on 2D materials. J. Mater. Chem. C 9, 6122–6150 (2021).

    [113] Y. Tang, J. Chen, High responsivity of Gr/n-Si Schottky junction near-infrared photodetector. Superlattices Microstruct. 150, 106803 (2021).

    [114] K.P. Bera, G. Haider, Y.T. Huang, P.K. Roy, C.R. Paul Inbaraj et al., Graphene sandwich stable perovskite quantum-dot light-emissive ultrasensitive and ultrafast broadband vertical phototransistors. ACS Nano 13, 12540–12552 (2019).

    [115] G. Haider, R. Ravindranath, T.P. Chen, P. Roy, P.K. Roy et al., Dirac point induced ultralow-threshold laser and giant optoelectronic quantum oscillations in graphene-based heterojunctions. Nat. Commun. 8, 256 (2017).

    [116] W. Tu, Y. Dong, J. Lei, H. Ju, Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles. Anal. Chem. 82, 8711–8716 (2010).

    [117] Y. Wang, R. Tu, C. Hou, Z. Wang, Zn–porphyrin metal–organic framework–based photoelectrochemical enzymatic biosensor for hypoxanthine. J. Solid State Electrochem. 26, 565–572 (2022).

    [118] D.-J. Li, Y.-B. Tian, Q. Lin, J. Zhang, Z.-G. Gu, Optimizing photodetectors in two-dimensional metal-metalloporphyrinic framework thin films. ACS Appl. Mater. Interfaces 14, 33548–33554 (2022).

    [119] M. Cui, Z. Shao, L. Qu, X. Liu, H. Yu et al., MOF-derived In2O3 microrods for high-performance photoelectrochemical ultraviolet photodetectors. ACS Appl. Mater. Interfaces 14, 39046–39052 (2022).

    [120] H.-R. Wang, X.-K. Tian, J.-R. Zhang, M.-Y. Wen, X.-G. Yang, Acridine based metal-organic framework host-guest featuring efficient photoelectrochemical-type photodetector and white LED. Dalton Trans. 51, 11231–11235 (2022).

    [121] M. Yang, Q. Han, X. Liu, J. Han, Y. Zhao et al., Photodetectors: ultrahigh stability 3D TI Bi2Se3/MoO3 thin film heterojunction infrared photodetector at optical communication waveband. Adv. Funct. Mater. 30, 2070078 (2020).

    [122] C. Tan, M. Amani, C. Zhao, M. Hettick, X. Song et al., Evaporated Sex Te1-x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv. Mater. 32, e2001329 (2020).

    [123] F. Wang, Y. Zhang, Y. Gao, P. Luo, J. Su et al., 2D metal chalcogenides for IR photodetection. Small 15, 1901347 (2019).

    [124] F. Wang, K. Pei, Y. Li, H. Li, T. Zhai, 2D homojunctions for electronics and optoelectronics. Adv. Mater. 33, 2005303 (2021).

    [125] Z. Guo, R. Cao, H. Wang, X. Zhang, F. Meng et al., High-performance polarization-sensitive photodetectors on two-dimensional β-InSe. Natl. Sci. Rev. 9, nwa098 (2021).

    [126] F. Wang, J. Wu, Y. Zhang, S. Yang, N. Zhang et al., High-sensitivity shortwave infrared photodetectors of metal-organic frameworks integrated on 2D layered materials. Sci. China Mater. 65, 451–459 (2022).

    [127] H. Arora, R. Dong, T. Venanzi, J. Zscharschuch, H. Schneider et al., Demonstration of a broadband photodetector based on a two-dimensional metal-organic framework. Adv. Mater. 32, e1907063 (2020).

    [128] M. Albaladejo-Siguan, E.C. Baird, D. Becker-Koch, Y. Li, A.L. Rogach et al., Stability of quantum dot solar cells: a matter of (life)time. Adv. Energy Mater. 11, 2003457 (2021).

    [129] P.-Y. Huang, Y.-Y. Zhang, P.-C. Tsai, R.-J. Chung, Y.-T. Tsai et al., Interfacial engineering of quantum dots–metal–organic framework composite toward efficient charge transport for a short-wave infrared photodetector. Adv. Opt. Mater. 12, 2302062 (2024).

    [130] C. Liu, J. Wang, J. Wan, Y. Cheng, R. Huang et al., Amorphous metal–organic framework-dominated nanocomposites with both compositional and structural heterogeneity for oxygen evolution. Angew. Chem. Int. Ed. 59, 3630–3637 (2020).

    [131] T.D. Bennett, S. Horike, Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat. Rev. Mater. 3, 431–440 (2018).

    [132] S. Gao, Y. Huang, J. Tan, J. Xu, L. Zhao et al., Self-powered infrared photodetectors with ultra-high speed and detectivity based on amorphous Cu-based MOF films. ACS Appl. Mater. Interfaces 15, 32637–32646 (2023).

    [133] S. Bachinin, A. Marunchenko, N. Zhestkij, E. Gunina, V.A. Milichko, Metal-organic framework single crystal infrared photodetector. Photonics Nanostruct. Fundam. Appl. 55, 101145 (2023).

    [134] Y. Fu, K. Zou, M. Liu, X. Zhang, C. Du et al., Highly selective and sensitive photoelectrochemical sensing platform for VEGF165 assay based on the switching of photocurrent polarity of CdS QDs by porous Cu2O-CuO flower. Anal. Chem. 92, 1189–1196 (2020).

    [135] W.-W. Zhan, Q. Kuang, J.-Z. Zhou, X.-J. Kong, Z.-X. Xie et al., Semiconductor@metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 135, 1926–1933 (2013).

    [136] W.-W. Zhao, J.-J. Xu, H.-Y. Chen, Photoelectrochemical DNA biosensors. Chem. Rev. 114, 7421–7441 (2014).

    [137] H. Li, M. Han, X. Weng, Y. Zhang, J. Li, DNA-tetrahedral-nanostructure-based entropy-driven amplifier for high-performance photoelectrochemical biosensing. ACS Nano 15, 1710–1717 (2021).

    [138] S. Liu, Y. Jia, H. Dong, X. Yu, D.-P. Zhang et al., Intramolecular photoelectrochemical system using tyrosine-modified antibody-targeted peptide as electron donor for detection of biomarkers. Anal. Chem. 92, 10935–10939 (2020).

    [139] F.-Z. Chen, Z. Li, X.-N. Liu, Y.-C. Zhu, D.-M. Han et al., Target-dependent gating of nanopores integrated with H-cell: toward a general platform for photoelectrochemical bioanalysis. Anal. Chem. 93, 5001–5004 (2021).

    [140] B. Fu, Z. Zhang, Rationally engineered photonic-plasmonic synergistic resonators in second near-infrared window for in vivo photoelectrochemical biodetection. Nano Lett. 19, 9069–9074 (2019).

    [141] Y. Qin, J. Wen, L. Zheng, H. Yan, L. Jiao et al., Single-atom-based heterojunction coupling with ion-exchange reaction for sensitive photoelectrochemical immunoassay. Nano Lett. 21, 1879–1887 (2021).

    [142] X. Chen, W. Zhang, L. Zhang, L. Feng, C. Zhang et al., Turning on the photoelectrochemical responses of Cd probe-deposited g-C3N4 nanosheets by nitrogen plasma treatment toward a selective sensor for H2S. ACS Appl. Mater. Interfaces 13(1), 2052–2061 (2021).

    [143] T. Hang, C. Li, D. Liang, S. Li, H. Zhou et al., Metal-organic frameworks-based hierarchical heterojunction coupling with plasmonic nanoshells for self-powered photoelectrochemical immunoassay. Chem. Eng. J. 431, 133465 (2022).

    [144] C. Hou, J. Peng, Q. Xu, Z. Ji, X. Hu, Elaborate fabrication of MOF-5 thin films on a glassy carbon electrode (GCE) for photoelectrochemical sensors. RSC Adv. 2, 12696–12698 (2012).

    [145] G.-Y. Zhang, Y.-H. Zhuang, D. Shan, G.-F. Su, S. Cosnier et al., Zirconium-based porphyrinic metal-organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoprotein detection. Anal. Chem. 88, 11207–11212 (2016).

    [146] G. Zhang, D. Shan, H. Dong, S. Cosnier, K.A. Al-Ghanim et al., DNA-mediated nanoscale metal-organic frameworks for ultrasensitive photoelectrochemical enzyme-free immunoassay. Anal. Chem. 90, 12284–12291 (2018).

    [147] F.-Z. Chen, Y. Gao, Y.-J. Li, W. Li, X.-Y. Wu et al., Photoelectrochemical detection of tetracycline with exceptional speediness, ultralow detection limit, and high selectivity. Sens. Actuat. B Chem. 361, 131651 (2022).

    [148] W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015).

    [149] C. Chen, Y. Tuo, Q. Lu, H. Lu, S. Zhang et al., Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Appl. Catal. B Environ. 287, 119953 (2021).

    [150] X. Li, S. Liu, K. Fan, Z. Liu, B. Song et al., MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting. Adv. Energy Mater. 8, 1800101 (2018).

    [151] W. Kong, M.-H. Xiang, L. Xia, M. Zhang, R.-M. Kong et al., In-situ synthesis of 3D Cu2O@Cu-based MOF nanobelt arrays with improved conductivity for sensitive photoelectrochemical detection of vascular endothelial growth factor 165. Biosens. Bioelectron. 167, 112481 (2020).

    [152] S. Zhou, J. Guo, Z. Dai, C. Liu, J. Zhao et al., Engineering homochiral MOFs in TiO2 nanotubes as enantioselective photoelectrochemical electrode for chiral recognition. Anal. Chem. 93, 12067–12074 (2021).

    [153] Y. Gao, X. Fan, X. Zhang, Q. Guan, Y. Xing et al., Switchable multiplex photoelectrochemical immunoassay of Aβ42 and Aβ40 based on a pH-responsive i-motif probe and Pyrene-based MOF photocathode. Anal. Chem. 94, 6621–6627 (2022).

    [154] M. Peng, G. Guan, H. Deng, B. Han, C. Tian et al., PCN-224/rGO nanocomposite based photoelectrochemical sensor with intrinsic recognition ability for efficient p-arsanilic acid detection. Environ. Sci. Nano 6, 207–215 (2019).

    [155] Q. Wei, C. Wang, P. Li, T. Wu, N. Yang et al., ZnS/C/MoS2 nanocomposite derived from metal-organic framework for high-performance photo-electrochemical immunosensing of carcinoembryonic antigen. Small 15, e1902086 (2019).

    [156] Y. Yu, S. Zhao, B. Zhang, S. Han, M. Li et al., Cellulose nanocrystal/TiO2 nanotube composites for circularly polarized light detection. ACS Appl. Nano Mater. 5, 899–907 (2021).

    [157] J. Sun, L. Ding, Linearly polarization-sensitive perovskite photodetectors. Nano-Micro Lett. 15, 90 (2023).

    [158] L. Wang, Y. Xue, M. Cui, Y. Huang, H. Xu et al., A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed. 59, 6442–6450 (2020).

    [159] M. Mustaqeem, S. Kamal, N. Ahmad, P.-T. Chou, K.-H. Lin et al., Chiral metal-organic framework based spin-polarized flexible photodetector with ultrahigh sensitivity. Mater. Today Nano 21, 100303 (2023).

    [160] C. Li, H. Schopmans, L. Langer, S. Marschner, A. Chandresh et al., Twisting of porphyrin by assembly in a metal-organic framework yielding chiral photoconducting films for circularly-polarized-light detection. Angew. Chem. Int. Ed. 62, e202217377 (2023).

    [161] Y.-B. Tian, K. Tanaka, L.-M. Chang, C. Wöll, Z.-G. Gu et al., Highly efficient light helicity detection of enantiomers by chiral metal-organic framework thin films. Nano Lett. 23, 5794–5801 (2023).

    Jin-Biao Zhang, Yi-Bo Tian, Zhi-Gang Gu, Jian Zhang. Metal–Organic Framework-Based Photodetectors[J]. Nano-Micro Letters, 2024, 16(1): 253
    Download Citation