• Matter and Radiation at Extremes
  • Vol. 9, Issue 1, 015601 (2024)
Huasen Zhang1,2, Dongguo Kang2,a), Changshu Wu2, Liang Hao2..., Hao Shen2, Shiyang Zou2, Shaoping Zhu2 and Yongkun Ding2|Show fewer author(s)
Author Affiliations
  • 1Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 10088, China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 10088, China
  • show less
    DOI: 10.1063/5.0150343 Cite this Article
    Huasen Zhang, Dongguo Kang, Changshu Wu, Liang Hao, Hao Shen, Shiyang Zou, Shaoping Zhu, Yongkun Ding. Semi-hydro-equivalent design and performance extrapolation between 100 kJ-scale and NIF-scale indirect drive implosion[J]. Matter and Radiation at Extremes, 2024, 9(1): 015601 Copy Citation Text show less
    References

    [1] S.Atzeni, J.Meyer-ter-Vehn. The Physics of Inertial Fusion(2004).

    [2] K. S.Anderson, T. R.Boehly, R. S.Craxton, V. N.Goncharov, D. R.Hardinget?al.. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).

    [3] P.Amendt, R. L.Berger, S. G.Glendinning, S. H.Glenzer, J. D.Lindlet?al.. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339(2004).

    [4] J. D.Lawson. Some criteria for a power producing thermonuclear reactor. Proc. Phys. Soc., London, Sect. B, 70, 6(1957).

    [5] R.Betti, C. D.Zhou. A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion. Phys. Plasmas, 15, 102707(2008).

    [6] K. S.Anderson, R.Betti, P. Y.Chang, J.Edwards, B. K.Spearset?al.. Generalized measurable ignition criterion for inertial confinement fusion. Phys. Rev. Lett., 104, 135002(2010).

    [7] K. S.Anderson, R.Betti, P. Y.Chang, J.Edwards, B. K.Spearset?al.. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement. Phys. Plasmas, 17, 058102(2010).

    [8] S.Brandon, D.Clark, M. J.Edwards, S.Glenzer, B. K.Spearset?al.. Performance metrics for inertial confinement fusion implosions: Aspects of the technical framework for measuring progress in the National Ignition Campaign. Phys. Plasmas, 19, 056316(2012).

    [9] J.Edwards, O.Landen, J. D.Lindl, E.Moses. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).

    [10] R.Betti, A.Bose, A. R.Christopherson, J.Howard, K. M.Wooet?al.. Theory of alpha heating in inertial fusion: Alpha-heating metrics and the onset of the burning-plasma regime. Phys. Plasmas, 25, 072704(2018).

    [11] R.Betti, A. R.Christopherson, S. W.Haan, O. L.Landen, J. D.Lindl. Progress toward a self-consistent set of 1D ignition capsule metrics in ICF. Phys. Plasmas, 25, 122704(2018).

    [12] L. F.Berzak Hopkins, E.Dewald, L.Divol, S.Le Pape, A.Pak et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys. Rev. Lett, 120, 245003(2018).

    [13] O. A.Hurricane, L. C.Jarrott, P. K.Patel, P. T.Springer, C. R.Weberet?al.. Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility. Phys. Plasmas, 27, 050901(2020).

    [14] K.Baker, D. A.Callahan, O. A.Hurricane, A. L.Kritcher, A. B.Zylstraet?al.. Record energetics for an inertial fusion implosion at NIF. Phys. Rev. Lett., 126, 025001(2021).

    [15] D. A.Callahan, O. A.Hurricane, A. L.Kritcher, J. E.Ralph, A. B.Zylstraet?al.. Burning plasma achieved in inertial fusion. Nature, 601, 542(2022).

    [16] A. L.Kritcher, H. F.Robey, C. R.Weber, C. V.Young, A. B.Zylstraet?al.. Design of inertial fusion implosions reaching the burning plasma regime. Nat. Phys., 18, 251(2022).

    [17] H.Abu-Shawareb, R.Acree, J.Adams, P.Adams, B.Addis et al. Lawson criterion for ignition exceeded in an inertial fusion experiment. Phys. Rev. Lett, 129, 075001(2022).

    [18] D. A.Callahan, O. A.Hurricane, A. L.Kritcher, C. R.Weber, A. B.Zylstraet?al.. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition. Phys. Rev. E, 106, 025201(2022).

    [19] D. A.Callahan, O. A.Hurricane, A. L.Kritcher, J. E.Ralph, A. B.Zylstraet?al.. Experimental achievement and signatures of ignition at the National Ignition Facility. Phys. Rev. E, 106, 025202(2022).

    [20] B.Bishop(142022).

    [21] K. S.Anderson, R.Betti, A.Bose, R.Nora, A.Shvydkyet?al.. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility. Phys. Plasmas, 21, 056316(2014).

    [22] R.Betti, A.Bose, E. M.Campbell, D.Mangino, K. M.Wooet?al.. Core conditions for alpha heating attained in direct-drive inertial confinement fusion. Phys. Rev. E, 94, 011201(R)(2016).

    [23] R.Betti, A.Bose, D.Mangino, D.Patel, K. M.Wooet?al.. Analysis of trends in experimental observables: Reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA. Phys. Plasmas, 25, 062701(2018).

    [24] X. T.He, W. Y.Zhang. Inertial fusion research in China. Eur. Phys. J. D, 44, 227(2007).

    [25] D.Hu, F.Jing, X.Wei, W.Zheng, Q.Zhuet?al.. Laser performance of the SG-III laser facility. High Power Laser Sci. Eng., 4, e21(2016).

    [26] D. T.Casey, D. S.Clark, B. A.Hammel, D. D.Ho, O. S.Jones, J. M.Koning, A. L.Kritcher, J. L.Milovich, A. E.Pak, C. R.Weberet?al.. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions. Phys. Plasmas, 26, 050601(2019).

    [27] K.Baker, D. A.Callahan, O. A.Hurricane, P. K.Patel, P. T.Springeret?al.. Approaching a burning plasma on the NIF. Phys. Plasmas, 26, 052704(2019).

    [28] B.Bachmann, D. T.Casey, A.Kritcher, L.Pickworth, A. B.Zylstraet?al.. Hot-spot mix in large-scale HDC implosions at NIF. Phys. Plasmas, 27, 092709(2020).

    [29] H. B.An, J.Cheng, P. J.Gu, X. D.Hang, X. Y.Hu, J. H.Li, S. G.Li, X.Li, W. B.Pei, J.Qi, Y.Shi, P.Song, S.Wang, R.Yang, H.Yong, Q. H.Zeng, C. L.Zhai, A. Q.Zhang, H. S.Zhang, Y. Q.Zhao, W. D.Zheng, S. P.Zhu, S. Y.Zou. LARED-Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion. High Power Laser Part. Beams, 27, 032007(2015).

    [30] Z.Fan, X. T.He, B.Liu, J.Liu, G.Ren, L. F.Wang, J.Wu, W.Ye. A wedged-peak-pulse design with medium fuel adiabat for indirect-drive fusion. Phys. Plasmas, 21, 100705(2014).

    [31] C. E.Czajka, S. F.Khan, G. A.Kyrala, S. A.MacLaren, L. P.Masseet?al.. A near one-dimensional indirectly driven implosion at convergence ratio 30. Phys. Plasmas, 25, 056311(2018).

    [32] K. L.Baker, D. A.Callahan, O. A.Hurricane, J. E.Ralph, C. A.Thomaset?al.. Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser. Phys. Plasmas, 25, 056305(2018).

    [33] Lord Rayleigh. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., s1-14, 170(1882).

    [34] G.Taylor. The instability of liquid surface when accelerated in a direction perpendicular to their planes. Proc. R. Soc. London, Ser. A, 201, 192(1950).

    [35] R. D.Richtmyer. Taylor instability in shock acceleration of compressible fluid. Commun. Pure Appl. Math., 13, 297(1960).

    [36] E. E.Meshkov. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn, 4, 101(1969).

    [37] K.Mima, L.Montierth, R. L.Morse, H.Takabe. Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys. Fluids, 28, 3676(1985).

    [38] H.Aluie, R.Betti, V.Gopalaswamy, R.Yan, H.Zhang. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers. Phys. Rev. E, 97, 011203(R)(2018).

    [39] H.Aluie, R.Betti, R.Yan, H.Zhang. Nonlinear bubble competition of the multimode ablative Rayleigh–Taylor instability and applications to inertial confinement fusion. Phys. Plasmas, 27, 122701(2020).

    [40] H.Aluie, R.Betti, D.Shvarts, R.Yan, H.Zhang, D.Zhao. Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions. Phys. Rev. Lett., 121, 185002(2018).

    Huasen Zhang, Dongguo Kang, Changshu Wu, Liang Hao, Hao Shen, Shiyang Zou, Shaoping Zhu, Yongkun Ding. Semi-hydro-equivalent design and performance extrapolation between 100 kJ-scale and NIF-scale indirect drive implosion[J]. Matter and Radiation at Extremes, 2024, 9(1): 015601
    Download Citation