• Chinese Optics Letters
  • Vol. 22, Issue 12, 120001 (2024)
Xinyi Wang1, Jiangbing Du1,*, Weihong Shen2, Ke Xu3, and Zuyuan He1
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 3Department of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
  • show less
    DOI: 10.3788/COL202422.120001 Cite this Article Set citation alerts
    Xinyi Wang, Jiangbing Du, Weihong Shen, Ke Xu, Zuyuan He, "High-density MDM-WDM silicon photonic transmitter chiplet based on MRMs and dual-mode GC for 4 × 56 Gbps 3D co-packaged optical interconnects," Chin. Opt. Lett. 22, 120001 (2024) Copy Citation Text show less
    References

    [1] M. Tan, J. Xu, S. Liu et al. Co-packaged optics (CPO): status, challenges, and solutions. Front. Optoelectron., 16, 1(2023).

    [2] Y. Yao, Z. Cheng, J. Dong et al. Performance of integrated optical switches based on 2D materials and beyond. Front. Optoelectron., 13, 129(2020).

    [3] Y. Zhao, X. Wang, D. Gao et al. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Front. Optoelectron., 12, 148(2019).

    [4] S. Y. Siew, B. Li, F. Gao et al. Review of silicon photonics technology and platform development. J. Light. Technol., 39, 4374(2021).

    [5] M. Li, L. Wang, X. Li et al. Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications. Photonics Res., 6, 109(2018).

    [6] J. Sun, R. Kumar, M. Sakib et al. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Light. Technol., 37, 110(2018).

    [7] A. Rahim, A. Hermans, B. Wohlfeil et al. “Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv. Photonics, 3, 024003(2021).

    [8] Y. Zhu, F. Zhang, F. Yang et al. Toward single lane 200G optical interconnects with silicon photonic modulator. J. Light. Technol., 38, 67(2020).

    [9] T. Aoki, S. Sekiguchi, T. Simoyama et al. Low-crosstalk simultaneous 16-channel × 25 Gb/s operation of high-density silicon photonics optical transceiver. J. Light. Technol., 36, 1262(2018).

    [10] E. Timurdogan, Z. Su, R.-J. Shiue et al. 400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules. Optical Fiber Communication Conference, T3H(2020).

    [11] R. Blum. Integrated silicon photonics for high-volume data center applications. Proc. SPIE, 11286, 112860M(2020).

    [12] S. Pitris, M. Moralis-Pegios, T. Alexoudi et al. O-band silicon photonic transmitters for datacom and computercom interconnects. J. Light. Technol., 37, 5140(2019).

    [13] R. Ding, Y. Liu, Q. Li et al. A compact low-power 320-Gb/s WDM transmitter based on silicon microrings. IEEE Photonics J., 6, 1(2014).

    [14] Y. Xu, J. Lin, R. Dubé-Demers et al. Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators. Opt. Lett., 43, 1554(2018).

    [15] D. Kong, H. Xin, K. Kim et al. Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator. J. Light. Technol., 38, 4677(2020).

    [16] Y. Xu, J. Lin, R. Dubé-Demers et al. A single-laser flexible-grid WDM silicon photonic transmitter using microring modulators. Optical Fiber Communication Conference, W1I(2018).

    [17] J. Fujikata, M. Noguchi, S.-H. Jeong et al. High-speed and 16 λ-WDM operation of Ge/Si electro-absorption modulator for C-band spectral regime. Optical Fiber Communications Conference and Exhibition (OFC), 1(2020).

    [18] D. Kong, H. Xin, K. Kim et al. 300 Gb/s net-rate intra-datacenter interconnects with a silicon integrated optical frequency comb modulator. Optical Fiber Communications Conference and Exhibition (OFC), 1(2020).

    [19] Y. Ding, J. Xu, F. Da Ros et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt. Express, 21, 10376(2013).

    [20] M. Ye, Y. Li, W. Zhang et al. Multimode transmitter based on Silicon microring modulators. IEEE Photonics J., 14, 6640504(2022).

    [21] X. Wu, C. Huang, K. Xu et al. Mode-division multiplexing for silicon photonic network-on-chip. J. Light. Technol., 35, 3223(2017).

    [22] G. Chen, Y. Yu, X. Zhang. Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection. Opt. Lett., 41, 3543(2016).

    [23] M. Minz, R. K. Sonkar. Design of a hybrid mode and wavelength division (de) multiplexer based on contra-directional grating assisted couplers on the SOI platform. Appl. Opt., 60, 2640(2021).

    [24] C. Li, H. Zhang, G. Zhou et al. Hybrid WDM-MDM transmitter with an integrated Si modulator array and a micro-resonator comb source. Opt. Express, 29, 39847(2021).

    [25] K. Y. Yang, C. Shirpurkar, A. D. White et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun., 13, 7862(2022).

    [26] Y. Tong, W. Zhou, X. Wu et al. Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler. IEEE J. Quantum Electron., 56, 1(2019).

    [27] X. Zhou, H. K. Tsang. High efficiency multimode waveguide grating coupler for few-mode fibers. IEEE Photonics J., 14, 6643405(2022).

    Xinyi Wang, Jiangbing Du, Weihong Shen, Ke Xu, Zuyuan He, "High-density MDM-WDM silicon photonic transmitter chiplet based on MRMs and dual-mode GC for 4 × 56 Gbps 3D co-packaged optical interconnects," Chin. Opt. Lett. 22, 120001 (2024)
    Download Citation