[3] Scharstein D, Szeliski R, Zabih R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. [C]∥Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001), December 9-10, 2001, Kauai, HI, USA. New York: IEEE, 131-140(2001).
[4] Flynn J, Neulander I, Philbin J. et al. Deep stereo: Learning to predict new views from the world's imagery. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 5515-5524(2016).
[5] Saxena A, Chung S H, Ng A Y. Learning depth from single monocular images[S.l.: s.n.], 18, 1161-1168(2005).
[8] Ladicky L, Shi J B, Pollefeys M. Pulling things out of perspective. [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 89-96(2014).
[11] Baig M H, Torresani L. Coupled depth learning. [C]∥2016 IEEE Winter Conference on Applications of Computer Vision (WACV), March 7-10, 2016, Lake Placid, NY, USA. New York: IEEE, 1-10(2016).
[12] Shi J P, Tao X, Xu L. et al. Break Ames room illusion[J]. ACM Transactions on Graphics, 34, 1-11(2015).
[13] Ranftl R, Vineet V, Chen Q F. et al. Dense monocular depth estimation in complex dynamic scenes. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 4058-4066(2016).
[14] Furukawa R, Sagawa R, Kawasaki H. Depth estimation using structured light flow: Analysis of projected pattern flow on an Object's surface. [C]∥2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy. New York: IEEE, 4650-4658(2017).
[15] Häne C, Ladicky L, Pollefeys M. Direction matters: Depth estimation with a surface normal classifier. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 381-389(2015).
[17] Zhuo W, Salzmann M, He X M. et al. Indoor scene structure analysis for single image depth estimation. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 614-622(2015).
[18] Liu M M, Salzmann M, He X M. Discrete-continuous depth estimation from a single image. [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 716-723(2014).
[22] He K M, Zhang X Y, Ren S Q. et al. Deep residual learning for image recognition. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 770-778(2016).
[25] Eigen D, Fergus R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 2650-2658(2015).
[26] Xie J Y, Girshick R, Farhadi A[M]. Deep3D: Fully Automatic 2D-to-3D Video Conversion with Deep Convolutional Neural Networks, 842-857(2016).
[31] Li B, Shen C H, Dai Y C et al. Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 1119-1127(2015).
[32] Wang P, Shen X H, Lin Z. et al. Towards unified depth and semantic prediction from a single image. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2800-2809(2015).
[34] Li J, Klein R, Yao A. A two-streamed network for estimating fine-scaled depth maps from single RGB images. [C]∥2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy. New York: IEEE, 3392-3400(2017).
[35] Lee J H, Heo M, Kim K R. et al. Single-image depth estimation based on Fourier domain analysis. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 330-339(2018).
[36] Ummenhofer B, Zhou H Z, Uhrig J. et al. DeMoN: depth and motion network for learning monocular stereo. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 5622-5631(2017).
[37] Fu H, Gong M M, Wang C H. et al. Deep ordinal regression network for monocular depth estimation. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 2002-2011(2018).
[38] Jégou S, Drozdzal M, Vazquez D. et al. The one hundred layers tiramisu: fully convolutional DenseNets for semantic segmentation. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 1175-1183(2017).
[41] Laina I, Rupprecht C, Belagiannis V. et al. Deeper depth prediction with fully convolutional residual networks. [C]∥2016 Fourth International Conference on 3D Vision (3DV), October 25-28, 2016, Stanford, CA, USA. New York: IEEE, 239-248(2016).
[42] Yin X C, Wang X W, Du X G. et al. Scale recovery for monocular visual odometry using depth estimated with deep convolutional neural fields. [C]∥2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy. New York: IEEE, 5871-5879(2017).