• Nano-Micro Letters
  • Vol. 16, Issue 1, 099 (2024)
Wenchao Zhao1,2, Haifeng Zhou1,2, Wenkang Li1,2, Manlin Chen1..., Min Zhou1 and Long Zhao1,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
  • 2School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01311-2 Cite this Article
    Wenchao Zhao, Haifeng Zhou, Wenkang Li, Manlin Chen, Min Zhou, Long Zhao. An Environment-Tolerant Ion-Conducting Double-Network Composite Hydrogel for High-Performance Flexible Electronic Devices[J]. Nano-Micro Letters, 2024, 16(1): 099 Copy Citation Text show less
    References

    [1] X. Yao, S. Zhang, L. Qian, N. Wei, V. Nica et al., Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Adv. Funct. Mater. 32, 2204565 (2022).

    [2] S. Wang, D. Zhang, X. He, J. Zhou, Y. Zhou et al., Anti-swelling zwitterionic hydrogels as multi-modal underwater sensors and all-in-one supercapacitors. ACS Appl. Polym. Mater. 4, 7498–7507 (2022).

    [3] X. Luo, L. Zhu, Y.-C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31, 2104928 (2021).

    [4] J. Xu, R. Jin, X. Ren, G. Gao, A wide temperature-tolerant hydrogel electrolyte mediated by phosphoric acid towards flexible supercapacitors. Chem. Eng. J. 413, 127446 (2021).

    [5] W. Peng, L. Han, Y. Gao, Z. Gong, T. Lu et al., Flexible organohydrogel ionic skin with ultra-low temperature freezing resistance and ultra-durable moisture retention. J. Colloid Interface Sci. 608, 396–404 (2022).

    [6] C. Ge, Y. Ling, S. Yan, S. Luan, H. Zhang et al., Preparation and mechanical properties of strong and tough poly (vinyl alcohol)-polypeptide double-network hydrogels. Eur. Polym. J. 99, 504–510 (2018).

    [7] Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30, 2003430 (2020).

    [8] H. Zhou, J. Lai, B. Zheng, X. Jin, G. Zhao et al., From glutinous-rice-inspired adhesive organohydrogels to flexible electronic devices toward wearable sensing, power supply, and energy storage. Adv. Funct. Mater. 32, 2108423 (2022).

    [9] J. Yin, K. Wei, J. Zhang, S. Liu, X. Wang et al., MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Rep. Phys. Sci. 3, 100893 (2022).

    [10] J. Liu, J. Huang, Q. Cai, Y. Yang, W. Luo et al., Design of slidable polymer networks: a rational strategy to stretchable, rapid self-healing hydrogel electrolytes for flexible supercapacitors. ACS Appl. Mater. Interfaces 12, 20479–20489 (2020).

    [11] Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29, 1806220 (2019).

    [12] J. Le Bideau, L. Viau, A. Vioux, Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40, 907–925 (2011).

    [13] Y.-R. Gao, J.-F. Cao, Y. Shu, J.-H. Wang, Research progress of ionic liquids-based gels in energy storage, sensors and antibacterial. Green Chem. Eng. 2, 368–383 (2021).

    [14] S. Zheng, W. Li, Y. Ren, Z. Liu, X. Zou et al., Moisture-wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes. Adv. Mater. 34, e2106570 (2022).

    [15] H. Lee, A. Erwin, M.L. Buxton, M. Kim, A.V. Stryutsky et al., Shape persistent, highly conductive ionogels from ionic liquids reinforced with cellulose nanocrystal network. Adv. Funct. Mater. 31, 2103083 (2021).

    [16] W. Qian, J. Texter, F. Yan, Frontiers in poly(ionic liquid)s: syntheses and applications. Chem. Soc. Rev. 46, 1124–1159 (2017).

    [17] F. Xie, X. Gao, Y. Yu, F. Lu, L. Zheng, Dually cross-linked single network poly(ionic liquid)/ionic liquid ionogels for a flexible strain-humidity bimodal sensor. Soft Matter 17, 10918–10925 (2021).

    [18] T. Lin, S. Li, Y. Hu, L. Sheng, X. Chen et al., Ultrastretchable and adhesive agarose/Ti3C2Tx-crosslinked-polyacrylamide double-network hydrogel for strain sensor. Carbohydr. Polym. 290, 119506 (2022).

    [19] L.-W. Xia, R. Xie, X.-J. Ju, W. Wang, Q. Chen et al., Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 4, 2226 (2013).

    [20] Z. Wang, H. Zhou, D. Liu, X. Chen, D. Wang et al., A structural gel composite enabled robust underwater mechanosensing strategy with high sensitivity. Adv. Funct. Mater. 32, 2201396 (2022).

    [21] J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).

    [22] J.-N. Liu, Q. He, M.-Y. Pan, K. Du, C.-B. Gong et al., An energy-saving, bending sensitive, and self-healing PVA-borax-IL ternary hydrogel electrolyte for visual flexible electrochromic strain sensors. J. Mater. Chem. A 10, 25118–25128 (2022).

    [23] J.J. Paik, B. Jang, S. Nam, L.J. Guo, A transparent poly(vinyl alcohol) ion-conducting organohydrogel for skin-based strain-sensing applications. Adv. Healthc. Mater. 12, e2300076 (2023).

    [24] S. Wu, L. Tang, Y. Xu, J. Yao, G. Tang et al., A self-powered flexible sensing system based on a super-tough, high ionic conductivity supercapacitor and a rapid self-recovering fully physically crosslinked double network hydrogel. J. Mater. Chem. C 10, 3027–3035 (2022).

    [25] J. Huang, S. Han, J. Zhu, Q. Wu, H. Chen et al., Mechanically stable all flexible supercapacitors with fracture and fatigue resistance under harsh temperatures. Adv. Funct. Mater. 32, 2270200 (2022).

    [26] H. Fang, J. Wang, L. Li, L. Xu, Y. Wu et al., A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications. Chem. Eng. J. 365, 153–164 (2019).

    [27] Y. Li, J. Yan, Y. Liu, X.-M. Xie, Super tough and intelligent multibond network physical hydrogels facilitated by Ti3C2Tx MXene nanosheets. ACS Nano 16, 1567–1577 (2022).

    [28] X. Suo, X. Cui, L. Yang, N. Xu, Y. Huang et al., Synthesis of ionic ultramicroporous polymers for selective separation of acetylene from ethylene. Adv. Mater. 32, e1907601 (2020).

    [29] W. Zhao, J. Jiang, W. Chen, Y. He, T. Lin et al., Radiation synthesis of rapidly self-healing, durable, and flexible poly(ionic liquid)/MXene gels with anti-freezing property for multi-functional strain sensors. Chem. Eng. J. 468, 143660 (2023).

    [30] M. Shi, T. Lin, Y. Wang, Y. Hu, J. Peng et al., One-step radiation synthesis of novel star-shaped polymeric ionic liquid–POSS gel electrolytes with high ionic conductivity and mechanical properties for supercapacitor. J. Mater. Sci. 55, 16347–16359 (2020).

    [31] S. Zhang, Y. Zhang, B. Li, P. Zhang, L. Kan et al., One-step preparation of a highly stretchable, conductive, and transparent poly(vinyl alcohol)-phytic acid hydrogel for casual writing circuits. ACS Appl. Mater. Interfaces 11, 32441–32448 (2019).

    [32] O. Hu, J. Lu, G. Chen, K. Chen, J. Gu et al., An antifreezing, tough, rehydratable, and thermoplastic poly(vinyl alcohol)/sodium alginate/poly(ethylene glycol) organohydrogel electrolyte for flexible supercapacitors. ACS Sustainable Chem. Eng. 9, 9833–9845 (2021).

    [33] X. Liu, J. Qin, J. Wang, Y. Chen, G. Miao et al., Robust conductive organohydrogel strain sensors with wide range linear sensing, UV filtering, anti-freezing and water-retention properties. Colloids Surf. A 632, 127823 (2022).

    [34] L. Mao, S. Hu, Y. Gao, L. Wang, W. Zhao et al., Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv. Healthc. Mater. 9, e2000872 (2020).

    [35] Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15, 1465–1474 (2021).

    [36] H. Qiao, P. Qi, X. Zhang, L. Wang, Y. Tan et al., Multiple weak H-bonds lead to highly sensitive, stretchable, self-adhesive, and self-healing ionic sensors. ACS Appl. Mater. Interfaces 11, 7755–7763 (2019).

    [37] T. Li, Y. Wang, S. Li, X. Liu, J. Sun, Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv. Mater. 32, e2002706 (2020).

    [38] Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022).

    [39] H. Sun, Y. Zhao, S. Jiao, C. Wang, Y. Jia et al., Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 31, 2101696 (2021).

    [40] A. Chae, G. Murali, S.-Y. Lee, J. Gwak, S.J. Kim et al., Highly oxidation-resistant and self-healable MXene-based hydrogels for wearable strain sensor. Adv. Funct. Mater. 33, 2370144 (2023).

    [41] J. Qin, J. Guo, Q. Xu, Z. Zheng, H. Mao et al., Synthesis of pyrrolidinium-type poly(ionic liquid) membranes for antibacterial applications. ACS Appl. Mater. Interfaces 9, 10504–10511 (2017).

    [42] X. Liu, L. Chang, L. Peng, R. Bai, Y. Wei et al., Poly(ionic liquid)-based efficient and robust antiseptic spray. ACS Appl. Mater. Interfaces 13, 48358–48364 (2021).

    [43] H. Wang, J. Xu, K. Li, Y. Dong, Z. Du et al., Highly stretchable, self-healable, and self-adhesive ionogels with efficient antibacterial performances for a highly sensitive wearable strain sensor. J. Mater. Chem. B 10, 1301–1307 (2022).

    [44] A. Arabi Shamsabadi, M. Sharifian Gh, B. Anasori, M. Soroush, Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustainable Chem. Eng. 6, 16586–16596 (2018).

    [45] J. Zhang, W. Xue, Y. Dai, L. Wu, B. Liao et al., Double network hydrogel sensors with high sensitivity in large strain range. Macromol. Mater. Eng. 306(12), 2100486 (2021).

    [46] M. Pi, S. Qin, S. Wen, Z. Wang, X. Wang et al., Rapid gelation of tough and anti-swelling hydrogels under mild conditions for underwater communication. Adv. Funct. Mater. 33, 2210188 (2023).

    [47] J. Liu, H. Wang, T. Liu, Q. Wu, Y. Ding et al., Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome. Adv. Funct. Mater. 32, 2204686 (2022).

    [48] J. Huang, S. Peng, J. Gu, G. Chen, J. Gao et al., Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel. Mater. Horiz. 7, 2085–2096 (2020).

    [49] S. Long, Y. Feng, F. He, J. Zhao, T. Bai et al., Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 85, 105973 (2021).

    [50] M.Y. Bhat, N. Yadav, S.A. Hashmi, A high performance flexible gel polymer electrolyte incorporated with suberonitrile as additive for quasi-solid carbon supercapacitor. Mater. Sci. Eng. B 262, 114721 (2020).

    [51] Q. Hu, S. Cui, K. Sun, X. Shi, M. Zhang et al., An antifreezing and thermally stable hydrogel electrolyte for high-performance all-in-one flexible supercapacitor. J. Energy Storage 50, 104231 (2022).

    [52] H. Peng, X. Gao, K. Sun, X. Xie, G. Ma et al., Physically cross-linked dual-network hydrogel electrolyte with high self-healing behavior and mechanical strength for wide-temperature tolerant flexible supercapacitor. Chem. Eng. J. 422, 130353 (2021).

    [53] Y. Zhao, B. Zhang, B. Yao, Y. Qiu, Z. Peng et al., Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 3, 1196–1210 (2020).

    [54] Y. Guo, K. Zheng, P. Wan, A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 14, e1704497 (2018).

    [55] J. Lu, J. Gu, O. Hu, Y. Fu, D. Ye et al., Highly tough, freezing-tolerant, healable and thermoplastic starch/poly(vinyl alcohol) organohydrogels for flexible electronic devices. J. Mater. Chem. A 9, 18406–18420 (2021).

    [56] C. Cai, W. Zhou, Y. Fu, Bioinspired MXene nacre with mechanical robustness for highly flexible all-solid-state photothermo-supercapacitor. Chem. Eng. J. 418, 129275 (2021).

    [57] Q. Liu, J. Zhou, C. Song, X. Li, Z. Wang et al., 2.2V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by “water-in-salt” gel electrolyte and N-doped graphene fiber. Energy Storage Mater. 24, 495–503 (2020).

    [58] C. Ma, D. Hou, J. Jiang, Y. Fan, X. Li et al., Elucidating the synergic effect in nanoscale MoS2/TiO2 heterointerface for Na-ion storage. Adv. Sci. 9, e2204837 (2022).

    [59] E. Cevik, S.T. Gunday, A. Bozkurt, R. Amine, K. Amine, Bio-inspired redox mediated electrolyte for high performance flexible supercapacitor applications over broad temperature domain. J. Power. Sources 474, 228544 (2020).

    Wenchao Zhao, Haifeng Zhou, Wenkang Li, Manlin Chen, Min Zhou, Long Zhao. An Environment-Tolerant Ion-Conducting Double-Network Composite Hydrogel for High-Performance Flexible Electronic Devices[J]. Nano-Micro Letters, 2024, 16(1): 099
    Download Citation