• Infrared and Laser Engineering
  • Vol. 52, Issue 4, 20220790 (2023)
Yang Huang, Yinglong Zhao, Shengjie Zhang, Xiaohan Du, and Chao Zhang
Author Affiliations
  • Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • show less
    DOI: 10.3788/IRLA20220790 Cite this Article
    Yang Huang, Yinglong Zhao, Shengjie Zhang, Xiaohan Du, Chao Zhang. Alignment technology for infrared refractive lens based on high performance[J]. Infrared and Laser Engineering, 2023, 52(4): 20220790 Copy Citation Text show less
    (a) Reflected wavefront of sample’s front surface S1; (b) Reflected wavefront of sample’s back surface S2; (c) Transmitted wavefront of sample; (d) Cavity wavefront of test optical path
    Fig. 1. (a) Reflected wavefront of sample’s front surface S1; (b) Reflected wavefront of sample’s back surface S2; (c) Transmitted wavefront of sample; (d) Cavity wavefront of test optical path
    Refractive index homogeneity of sample Si (a), sample ZnSe (b), sample Ge (c), sample ZnS (d)
    Fig. 2. Refractive index homogeneity of sample Si (a), sample ZnSe (b), sample Ge (c), sample ZnS (d)
    Model diagram of online device with lens alignment and image quality measurement
    Fig. 3. Model diagram of online device with lens alignment and image quality measurement
    Schematic diagram of iterative adjustment position
    Fig. 4. Schematic diagram of iterative adjustment position
    Schematic diagram of aberration effect on system wavefront
    Fig. 5. Schematic diagram of aberration effect on system wavefront
    Schematic diagram of system wavefront compensation
    Fig. 6. Schematic diagram of system wavefront compensation
    Schematic diagram of the relationship between wave aberration and incident angle
    Fig. 7. Schematic diagram of the relationship between wave aberration and incident angle
    Optical structure diagram of infrared lens
    Fig. 8. Optical structure diagram of infrared lens
    (a) Structure of clamping device; (b) Connection mode between clamping device and lens barrel
    Fig. 9. (a) Structure of clamping device; (b) Connection mode between clamping device and lens barrel
    ElementMaterialThickness/mmAperture/mm
    Optical windowsCaF213.002205
    Lens1Si15.033210
    Lens2Si15.950205
    Lens3Ge13.081160
    Lens4Ge11.367135
    Lens5Si11.616130
    Lens6ZnSe9.612120
    Table 1. Some optical system parameters of infrared lens
    FOVSystem wavefront diagram & MTF (λ=3.39 μm) Zernike coefficients of main aberration terms
    +6.5°First order: k5: −0.074; k6: −0.055; k7: 0.202; k8: 0.024; k9: 0.167. Medium & high order: k10: −0.044; k11: −0.027; k12: 0.159; k14: 0.020; k16: −0.133; k19: 0.091; k20: 0.066; k30: −0.047.
    First order: k5: −0.030; k6: −0.009;k7: −0.089; k8: −0.037; k9: 0.149. Medium & high order: k10: −0.057; k11: −0.037; k12: 0.095; k14: 0.030; k16: −0.128; k19:0.111; k20: 0.089; k30: −0.047.
    −6.5°First order: k5: 0.050; k6: −0.062; k7: −0.326; k8: −0.041; k9: 0.127. Medium & high order: k10: −0.168; k11: −0.057; k12: 0.084; k14: 0.058; k16: −0.116; k19: 0.062; k20: 0.084; k30: −0.046.
    Table 2. Measurement results of lens image quality after precision centering
    FOVSystem wavefront diagram & MTF (λ=3.39 μm) Zernike coefficients of main aberration terms
    +6.5°First order: k5: 0.010; k6: 0.007; k7: 0.011; k8: 0.023; k9: 0.029. Medium & high order: k10: 0.015; k11: −0.031; k12: 0.133; k14: 0.032; k16: −0.125; k19: 0.078; k20: 0.073; k30: −0.050.
    First order: k5: −0.011; k6: 0.009;k7: −0.032; k8: 0.020; k9: 0.007. Medium & high order: k10: −0.069; k11: −0.058; k12: 0.078; k14: 0.012; k16: −0.118; k19:0.100; k20: 0.084; k30: −0.044.
    −6.5°First order: k5: 0.015; k6: −0.013; k7: −0.015; k8: 0.022; k9: 0.001. Medium & high order: k10: −0.155; k11: −0.046; k12: 0.055; k14: 0.075; k16: −0.118; k19: 0.090; k20: 0.091; k30: −0.041.
    Table 3. Measurement results of lens image quality after iterative adjustment position
    FOVTransmission wavefront (λ=3.39 μm) Zernike coefficients of medium & high order aberration terms
    k10: 0.064; k11: 0.031; k12: −0.080; k14: −0.044; k16: 0.118; k19:- 0.099; k20: −0.073; k30: 0.051.
    Table 4. Transmission wavefront measurement result of the repaired optical windows
    FOVSystem wavefront diagram & MTF (λ=3.39 μm) Zernike coefficients of main aberration terms
    +6.5°First order: k5: 0.011; k6: 0.005; k7: 0.015; k8: 0.019; k9: 0.017. Medium & high order: k10: 0.072; k11: 0.004; k12: 0.087; k14: −0.007; k16: −0.010; k19: −0.025; k20: −0.015; k30: −0.007.
    First order: k5: −0.009; k6: 0.014;k7: −0.021; k8: 0.018; k9: 0.005. Medium & high order: k10: −0.007; k11: −0.023; k12: −0.005; k14: −0.030; k16: −0.006; k19:0.007; k20: 0.009; k30: 0.004.
    −6.5°First order: k5: 0.012; k6: −0.015; k7: −0.017; k8: 0.015; k9: 0.002. Medium & high order: k10: −0.095; k11: −0.019; k12: −0.029; k14: 0.035; k16: −0.007; k19: −0.007; k20: 0.027; k30: 0.006.
    Table 5. Measurement results of lens image quality after surface modification
    Yang Huang, Yinglong Zhao, Shengjie Zhang, Xiaohan Du, Chao Zhang. Alignment technology for infrared refractive lens based on high performance[J]. Infrared and Laser Engineering, 2023, 52(4): 20220790
    Download Citation