• Nano-Micro Letters
  • Vol. 17, Issue 1, 049 (2025)
Tianle Liu1,†, Munerah M. S. Almutairi2,†, Jie Ma1, Aisling Stewart2..., Zhaohui Xing3, Mengxia Liu3,4,*, Bo Hou2,** and Yuljae Cho1,5,***|Show fewer author(s)
Author Affiliations
  • 1UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
  • 2School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA Wales, UK
  • 3Department of Electrical and Computer Engineering, Yale University, New Haven, CT 06511, USA
  • 4Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
  • 5Future Photovoltaics Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01547-6 Cite this Article
    Tianle Liu, Munerah M. S. Almutairi, Jie Ma, Aisling Stewart, Zhaohui Xing, Mengxia Liu, Bo Hou, Yuljae Cho. Solution-Processed Thin Film Transparent Photovoltaics: Present Challenges and Future Development[J]. Nano-Micro Letters, 2025, 17(1): 049 Copy Citation Text show less
    References

    [1] Q. Wang, L. Wang, Renewable energy consumption and economic growth in OECD countries: a nonlinear panel data analysis. Energy 207, 118200 (2020).

    [2] A. Kausar, A. Sattar, C. Xu, S. Zhang, Z. Kang et al., Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chem. Soc. Rev. 50, 2696 (2021).

    [3] D. Meng, R. Zheng, Y. Zhao, E. Zhang, L. Dou et al., Near-infrared materials: the turning point of organic photovoltaics. Adv. Mater. 34, 2107330 (2022).

    [4] K. Lee, H.-D. Um, D. Choi, J. Park, N. Kim et al., The development of transparent photovoltaics. Cell Rep. Phys. Sci. 1, 100143 (2020).

    [5] J. Bing, L.G. Caro, H.P. Talathi, N.L. Chang, D.R. Mckenzie et al., Perovskite solar cells for building integrated photovoltaics⁠—glazing applications. Joule 6, 1446 (2022).

    [6] T.M. Koh, H. Wang, Y.F. Ng, A. Bruno, S. Mhaisalkar et al., Halide perovskite solar cells for building integrated photovoltaics: transforming building façades into power generators. Adv. Mater. 34, 2104661 (2022).

    [7] Y. Li, X. Huang, H.K.M. Sheriff, S.R. Forrest, Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nat. Rev. Mater. (2022).

    [8] T. Salameh, M.E.H. Assad, M. Tawalbeh, C. Ghenai, A. Merabet et al., Analysis of cooling load on commercial building in UAE climate using building integrated photovoltaic façade system. Sol. Energy 199, 617 (2020).

    [9] A. Anctil, E. Lee, R.R. Lunt, Net energy and cost benefit of transparent organic solar cells in building-integrated applications. Appl. Energy 261, 114429 (2020).

    [10] C.J. Traverse, R. Pandey, M.C. Barr, R.R. Lunt, Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2, 849 (2017).

    [11] K. Lee, N. Kim, K. Kim, H.-D. Um, W. Jin et al., Neutral-colored transparent crystalline silicon photovoltaics. Joule 4, 235 (2020).

    [12] D. Kim, S.S. Shin, S.M. Lee, J. Cho, J.H. Yun et al., Flexible and semi-transparent ultra-thin CIGSe solar cells prepared on ultra-thin glass substrate: a key to flexible bifacial photovoltaic applications. Adv. Funct. Mater. 30, 2001775 (2020).

    [13] S. Xie, D. Yang, J. Zhang, L. Wu, Development of semitransparent CdTe polycrystalline thin-film solar cells modified with a CuCl layer for BIPV. Sol. Energy 267, 112212 (2024).

    [14] S. Liu, Y. Guan, Y. Sheng, Y. Hu, Y. Rong et al., A review on additives for halide perovskite solar cells. Adv. Energy Mater. 10, 1902492 (2020).

    [15] M.A. Mahmud, T. Duong, J. Peng, Y. Wu, H. Shen et al., Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D–3D perovskite solar cells: a review. Adv. Funct. Mater. 32, 2009164 (2022).

    [16] H. Bi, J. Liu, Z. Zhang, L. Wang, R. Beresneviciute et al., All-perovskite tandem solar cells approach 26.5% efficiency by employing wide bandgap lead perovskite solar cells with new monomolecular hole transport layer. ACS Energy Lett. 8, 3852 (2023).

    [17] Y. Kang, R. Li, A. Wang, J. Kang, Z. Wang et al., Ionogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy Environ. Sci. 15, 3439 (2022).

    [18] Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416 (2022).

    [19] K. Jeong, J. Byeon, J. Jang, N. Ahn, M. Choi, Pulsatile therapy for perovskite solar cells. Joule 6, 1 (2022).

    [20] Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.-Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352 (2020).

    [21] X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 10, 2006435 (2021).

    [22] S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404 (2023).

    [23] X. Huang, D. Fan, Y. Li, S.R. Forrest, Multilevel peel-off patterning of a prototype semitransparent organic photovoltaic module. Joule 6, 1581 (2022).

    [24] W. Xu, X. Zhu, X. Ma, H. Zhou, X. Li et al., Achieving 15.81% and 15.29% efficiency of all-polymer solar cells based on layer-by-layer and bulk heterojunction structures. J. Mater. Chem. A 10, 13492 (2022).

    [25] A. Karki, A.J. Gillett, R.H. Friend, T. Nguyen, The path to 20% power conversion efficiencies in nonfullerene acceptor organic solar cells. Adv. Energy Mater. 11, 2003441 (2021).

    [26] X. Wang, H. Lu, Y. Liu, A. Zhang, N. Yu et al., Simple nonfused ring electron acceptors with 3D network packing structure boosting the efficiency of organic solar cells to 15.44%. Adv. Energy Mater. 11, 2102591 (2021).

    [27] D. Luo, W. Jang, D.D. Babu, M.S. Kim, D.H. Wang et al., Recent progress in organic solar cells based on non-fullerene acceptors: materials to devices. J. Mater. Chem. A 10, 3255 (2022).

    [28] J. Chen, D. Jia, E.M.J. Johansson, A. Hagfeldt, X. Zhang, Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy Environ. Sci. 14, 224 (2021).

    [29] A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92 (2016).

    [30] S. Lim, G. Lee, S. Han, J. Kim, S. Yun et al., Monodisperse perovskite colloidal quantum dots enable high-efficiency photovoltaics. ACS Energy Lett. 6, 2229 (2021).

    [31] X. Ling, J. Yuan, X. Zhang, Y. Qian, S.M. Zakeeruddin et al., Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32, 2001906 (2020).

    [32] J. Khan, X. Zhang, J. Yuan, Y. Wang, G. Shi et al., Tuning the surface-passivating ligand anchoring position enables phase robustness in CsPbI3 perovskite quantum dot solar cells. ACS Energy Lett. 5, 3322 (2020).

    [33] B. Hou, Y. Cho, B.S. Kim, J. Hong, J.B. Park et al., Highly monodispersed PbS quantum dots for outstanding cascaded-junction solar cells. ACS Energy Lett. 1, 834 (2016).

    [34] B. Hou, F.C. Mocanu, Y. Cho, J. Lim, J. Feng et al., Evolution of local structural motifs in colloidal quantum dot semiconductor nanocrystals leading to nanofaceting. Nano Lett. 23, 2277 (2023).

    [35] Y. Cho, B. Hou, P. Giraud, S. Pak, S. Cha, Ferroelectric field effect induced charge carrier transport modulation at quantum dot solar cell heterojunction interface. ACS Appl. Energy Mater. 4, 12056 (2021).

    [36] Y. Cho, B. Hou, J. Lim, S. Lee, S. Pak et al., Balancing charge carrier transport in a quantum dot p–n junction toward hysteresis-free high-performance solar cells. ACS Energy Lett. 3, 1036 (2018).

    [37] B. Hou, B. Kim, H.K.H. Lee, Y. Cho, P. Giraud et al., Multiphoton absorption stimulated metal chalcogenide quantum dot solar cells under ambient and concentrated irradiance. Adv. Funct. Mater. 30, 2004563 (2020).

    [38] Y. Cho, P. Giraud, B. Hou, Y. Lee, J. Hong et al., Charge transport modulation of a flexible quantum dot solar cell using a piezoelectric effect. Adv. Energy Mater. 8, 1700809 (2018).

    [39] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).

    [40] M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (Version 64). Prog. Photovolt. 32, 425 (2024).

    [41] L. Chao, T. Niu, W. Gao, C. Ran, L. Song et al., Solvent engineering of the precursor solution toward large-area production of perovskite solar cells. Adv. Mater. 33, 2005410 (2021).

    [42] Y.-W. Zhang, P.-P. Cheng, W.-Y. Tan, Y. Min, Balance the thickness, transparency and stability of semi-transparent perovskite solar cells by solvent engineering and using a bifunctional additive. Appl. Surf. Sci. 537, 147908 (2021).

    [43] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014).

    [44] A. Mahapatra, D. Prochowicz, M.M. Tavakoli, S. Trivedi, P. Kumar et al., A review of aspects of additive engineering in perovskite solar cells. J. Mater. Chem. A 8, 27 (2020).

    [45] F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1902579 (2020).

    [46] Z. Wang, L. Liu, X. Liu, D. Song, D. Shi et al., Uncovering synergistic effect of chloride additives for efficient quasi-2D perovskite solar cells. Chem. Eng. J. 432, 134367 (2022).

    [47] J. Sanchez-Diaz, R.S. Sánchez, S. Masi, M. Kreĉmarová, A.O. Alvarez et al., Tin perovskite solar cells with >1,300 h of operational stability in N2 through a synergistic chemical engineering approach. Joule 6, 861 (2022).

    [48] J.-W. Lee, S. Tan, S.I. Seok, Y. Yang, N.-G. Park, Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022).

    [49] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989 (2016).

    [50] M. He, J. Liang, Z. Zhang, Y. Qiu, Z. Deng et al., Compositional optimization of a 2D–3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. J. Mater. Chem. A 8, 25831 (2020).

    [51] C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani et al., Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656 (2016).

    [52] D.J. Kubicki, D. Prochowicz, A. Hofstetter, M. Saski, P. Yadav et al., Formation of stable mixed guanidinium–methylammonium phases with exceptionally long carrier lifetimes for high-efficiency lead iodide-based perovskite photovoltaics. J. Am. Chem. Soc. 140, 3345 (2018).

    [53] F. Ali, C. Roldán-Carmona, M. Sohail, M.K. Nazeeruddin, Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 24, 2002989 (2020).

    [54] X. Gong, L. Guan, H. Pan, Q. Sun, X. Zhao et al., Highly efficient perovskite solar cells via nickel passivation. Adv. Funct. Mater. 28, 1804286 (2018).

    [55] H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444 (2021).

    [56] Z. Dai, S.K. Yadavalli, M. Chen, A. Abbaspourtamijani et al., Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618 (2021).

    [57] M. Stolterfoht, C.M. Wolff, J.A. Márquez, S. Zhang, C.J. Hages et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847 (2018).

    [58] E. Aktas, N. Phung, H. Köbler, D.A. González, M. Méndez et al., Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells. Energy Environ. Sci. 14, 3976 (2021).

    [59] E. Li, C. Liu, H. Lin, X. Xu, S. Liu et al., Bonding strength regulates anchoring-based self-assembly monolayers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 31, 2103847 (2021).

    [60] J.W. Jung, F. Liu, T.P. Russell, W.H. Jo, A high mobility conjugated polymer based on dithienothiophene and diketopyrrolopyrrole for organic photovoltaics. Energy Environ. Sci. 5, 6857 (2012).

    [61] G. Oklem, X. Song, L. Toppare, D. Baran, G. Gunbas, A new NIR absorbing DPP-based polymer for thick organic solar cells. J. Mater. Chem. C 6, 2957 (2018).

    [62] L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu et al., Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 13, 635 (2020).

    [63] Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li et al., An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170 (2015).

    [64] J. Yuan, T. Huang, P. Cheng, Y. Zou, H. Zhang et al., Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat. Commun. 10, 570 (2019).

    [65] Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang et al., Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 10, 2515 (2019).

    [66] R. Wang, J. Yuan, R. Wang, G. Han, T. Huang et al., Rational tuning of molecular interaction and energy level alignment enables high-performance organic photovoltaics. Adv. Mater. 31, 1904215 (2019).

    [67] Y. Kan, Y. Sun, Y. Ren, Y. Xu, X. Jiang et al., Amino-functionalized graphdiyne derivative as a cathode interface layer with high thickness tolerance for highly efficient organic solar cells. Adv. Mater. 36, 2312635 (2024).

    [68] R. Ma, K. Zhou, Y. Sun, T. Liu, Y. Kan et al., Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 5, 725 (2022).

    [69] C. Chen, L. Wang, W. Xia, K. Qiu, C. Guo et al., Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%. Nat. Commun. 15, 6865 (2024).

    [70] Y. Sun, L. Nian, Y. Kan, Y. Ren, Z. Chen et al., Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 6, 2835 (2022).

    [71] Y. Miao, Y. Sun, W. Zou, X. Zhang, Y. Kan et al., Isomerization engineering of solid additives enables highly efficient organic solar cells via manipulating molecular stacking and aggregation of active layer. Adv. Mater. 36, 2406623 (2024).

    [72] H. Guo, F. Hou, X. Ren, X. Ning, Y. Wang et al., Recent progresses on transparent electrodes and active layers toward neutral, color semitransparent perovskite solar cells. Sol. RRL (2023).

    [73] Y. Huang, C. Jiang, Y. Zhu, S. Zhang, G. Li et al., A near-infrared acceptor incorporating selenium heterocycles for efficient semi-transparent photovoltaics and sensitive photodetectors. Org. Electron. 110, 106642 (2022).

    [74] H. Yu, J. Wang, Q. Zhou, J. Qin, Y. Wang et al., Semi-transparent organic photovoltaics. Chem. Soc. Rev. 52, 4132 (2023).

    [75] G.P. Kini, S.J. Jeon, D.K. Moon, Latest progress on photoabsorbent materials for multifunctional semitransparent organic solar cells. Adv. Funct. Mater. 31, 2007931 (2021).

    [76] I. Burgués-Ceballos, L. Lucera, P. Tiwana, K. Ocytko, L.W. Tan et al., Transparent organic photovoltaics: A strategic niche to advance commercialization. Joule 5, 2261 (2021).

    [77] E. Pulli, E. Rozzi, F. Bella, Transparent photovoltaic technologies: Current trends towards upscaling. Energy Convers. Manag. 219, 112982 (2020).

    [78] W. Zou, L. Shan, W. Cao, J. Chen, X. Liu et al., Precrystallized-heterojunction strategy on precursor solution enables high-performance semitransparent perovskite solar cells. Adv. Opt. Mater. 11, 2202982 (2023).

    [79] Z. Yang, Y. Niu, X. Zhang, Z. Zhang, L. Hu, Efficiency improvement of semi-transparent perovskite solar cells via crystallinity enhancement. J. Mater. Chem. A 11, 3070 (2023).

    [80] R. Meng, Q. Jiang, D. Liu, Balancing efficiency and transparency in organic transparent photovoltaics. npj Flex. Electron. 6, 39 (2022).

    [81] M.L. Ball, Q. Burlingame, H.L. Smith, T. Liu, S.R. Parkin et al., Design of UV-absorbing donor molecules for nearly imperceptible organic solar cells. ACS Energy Lett. 7, 180 (2022).

    [82] I. Massiot, A. Cattoni, S. Collin, Progress and prospects for ultrathin solar cells. Nat. Energy 5, 959 (2020).

    [83] Y. Li, C. Ji, Y. Qu, X. Huang, S. Hou et al., Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture. Adv. Mater. 31, 1903173 (2019).

    [84] S. Castelletto, A. Boretti, Luminescence solar concentrators: a technology update. Nano Energy 109, 108269 (2023).

    [85] I. Papakonstantinou, M. Portnoi, M.G. Debije, The hidden potential of luminescent solar concentrators. Adv. Energy Mater. 11, 2002883 (2021).

    [86] B. Zhang, G. Lyu, E.A. Kelly, R.C. Evans, Förster resonance energy transfer in luminescent solar concentrators. Adv. Sci. 9, 2201160 (2022).

    [87] F. Matteocci, D. Rossi, L.A. Castriotta, D. Ory, S. Mejaouri et al., Wide bandgap halide perovskite absorbers for semi-transparent photovoltaics: from theoretical design to modules. Nano Energy 101, 107560 (2022).

    [88] W. Yue, H. Yang, H. Cai, Y. Xiong, T. Zhou et al., Printable high-efficiency and stable FAPbBr3 perovskite solar cells for multifunctional building-integrated photovoltaics. Adv. Mater. (2023).

    [89] X. Liu, Z. Zhong, R. Zhu, J. Yu, G. Li, Aperiodic band-pass electrode enables record-performance transparent organic photovoltaics. Joule 6, 1918 (2022).

    [90] J. Kim, D. Kim, W. Kim, S. Woo, S.-W. Baek et al., Efficient semi-transparent perovskite quantum dot photovoltaics enabled by asymmetric dielectric/metal/dielectric transparent electrodes. Chem. Eng. J. 469, 143824 (2023).

    [91] Y.-M. Sung, M.-Z. Li, D. Luo, Y.-D. Li, S. Biring et al., A micro-cavity forming electrode with high thermal stability for semi-transparent colorful organic photovoltaics exceeding 13% power conversion efficiency. Nano Energy 80, 105565 (2021).

    [92] X. Li, R. Xia, K. Yan, J. Ren, H.-L. Yip et al., Semitransparent organic solar cells with vivid colors. ACS Energy Lett. 5, 3115 (2020).

    [93] T. Liu, X. Zhao, P. Wang, Q.C. Burlingame, J. Hu et al., Highly transparent, scalable, and stable perovskite solar cells with minimal aesthetic compromise. Adv. Energy Mater. 13, 2200402 (2022).

    [94] J. Zhang, G. Xu, F. Tao, G. Zeng, M. Zhang et al., Highly efficient semitransparent organic solar cells with color rendering index approaching 100. Adv. Mater. 31, 1807159 (2019).

    [95] M. Wang, F. Cao, M. Wang, K. Deng, L. Li, Intermediate-adduct-assisted growth of stable CsPbI2Br inorganic perovskite films for high-efficiency semitransparent solar cells. Adv. Mater. 33, 2006745 (2021).

    [96] Q. Wei, Y. Zhang, T. Shan, H. Zhong, A near-infrared polymer enables over 50% transmittance in semi-transparent organic solar cells. J. Mater. Chem. C 10, 5887 (2022).

    [97] J.C. Yu, B. Li, C.J. Dunn, J. Yan, B.T. Diroll et al., High-performance and stable semi-transparent perovskite solar cells through composition engineering. Adv. Sci. 9, 2201487 (2022).

    [98] Y. Ding, M. Young, Y. Zhao, C. Traverse, A. Benard et al., Influence of photovoltaic angle-dependence on overall power output for fixed building integrated configurations. Sol. Energy Mat. Sol. Cells 132, 523 (2015).

    [99] K.-T. Lee, J.-Y. Jang, S.J. Park, S.A. Ok, H.J. Park, Incident-angle-controlled semitransparent colored perovskite solar cells with improved efficiency exploiting a multilayer dielectric mirror. Nanoscale 9, 13983 (2017).

    [100] R.R. Lunt, Theoretical limits for visibly transparent photovoltaics. Appl. Phys. Lett. 101, 043902 (2012).

    [101] Y. Jin, H. Feng, Z. Fang, L. Yang, K. Liu et al., Stabilizing semi-transparent perovskite solar cells with a polymer composite hole transport layer. Nano Res. 17, 1500 (2023).

    [102] W. Chen, J. Zhang, G. Xu, R. Xue, Y. Li et al., A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 30, 1800855 (2018).

    [103] M. Young, C.J. Traverse, R. Pandey, M.C. Barr, R.R. Lunt, Angle dependence of transparent photovoltaics in conventional and optically inverted configurations. Appl. Phys. Lett. 103, 133304 (2013).

    [104] X. Zhang, Y. Qian, X. Ling, Y. Wang, Y. Zhang et al., α-CsPbBr3 perovskite quantum dots for application in semitransparent photovoltaics. ACS Appl. Mater. Interfaces 12, 27307 (2020).

    [105] J. Barichello, D. Di Girolamo, E. Nonni, B. Paci, A. Generosi et al., Semi-transparent blade-coated FAPbBr3 paerovskite solar cells: a scalable low-temperature manufacturing process under ambient condition. Sol. RRL 7, 2200739 (2023).

    [106] S. Liu, H. Li, X. Wu, D. Chen, L. Zhang et al., Pseudo-planar heterojunction organic photovoltaics with optimized light utilization for printable solar windows. Adv. Mater. 34, 2201604 (2022).

    [107] X. Zhang, D. Jia, C. Hägglund, V.A. Öberg, J. Du et al., Highly photostable and efficient semitransparent quantum dot solar cells by using solution-phase ligand exchange. Nano Energy 53, 373 (2018).

    [108] S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews et al., Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2, 9221 (2014).

    [109] V. D’Innocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Kandada, S.D. Stranks et al., Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).

    [110] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013).

    [111] J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724 (2023).

    [112] C. Roldán-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona et al., High efficiency single-junction semitransparent perovskite solar cells. Energy Environ. Sci. 7, 2968 (2014).

    [113] Y. Guo, K. Shoyama, W. Sato, E. Nakamura, Polymer stabilization of lead(II) perovskite cubic nanocrystals for semitransparent solar cells. Adv. Energy Mater. 6, 1502317 (2016).

    [114] J.H. Heo, H.J. Han, M. Lee, M. Song, D.H. Kim et al., Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells. Energy Environ. Sci. 8, 2922 (2015).

    [115] L. Yang, Y. Jin, Z. Fang, J. Zhang, Z. Nan et al., Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 15, 111 (2023).

    [116] S.B. Shivarudraiah, N. Tewari, M. Ng, C.-H.A. Li, D. Chen et al., Optically clear films of formamidinium lead bromide perovskite for wide-band-gap, solution-processed, semitransparent solar cells. ACS Appl. Mater. Interfaces 13, 37223 (2021).

    [117] M.Z. Tun, P. Pansa-Ngat, P. Ruankham, K.K. Shin Thant, S. Kamnoedmanee et al., Improving morphology and optoelectronic properties of ultra-wide bandgap perovskite via Cs tuning for clear solar cell and UV detection applications. Sci. Rep. 13, 2965 (2023).

    [118] R. Garai, B. Sharma, M.A. Afroz, S. Choudhary, T. Sharma et al., High-efficiency semitransparent perovskite solar cells enabled by controlling the crystallization of ultrathin films. ACS Energy Lett. 9, 2936 (2024).

    [119] C. Li, R. Tao, Y. Ding, C. Liu, X. Ding et al., Highly visible-transparent and color-neutral perovskite solar cells for self-powered smart windows Sol. RRL 6, 2101009 (2022).

    [120] Y. Zhu, L. Shu, Q. Zhang, Y. Zhu, S. Poddar et al., Moth eye-inspired highly efficient, robust, and neutral-colored semitransparent perovskite solar cells for building-integrated photovoltaics. EcoMat 3, e12117 (2021).

    [121] M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778 (2019).

    [122] S. Mahesh, J.M. Ball, R.D.J. Oliver, D.P. McMeekin, P.K. Nayak et al., Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258 (2020).

    [123] Z. Yuan, M. Zhang, Z. Yen, M. Feng, X. Jin et al., High-performance semi-transparent perovskite solar cells with over 22% visible transparency: pushing the limit through mxene interface engineering. ACS Appl. Mater. Interfaces 15, 37629 (2023).

    [124] B. Sharma, R. Garai, M.A. Afroz, T. Sharma, S. Choudhary et al., Enhancing light utilization efficiency of semi-transparent perovskite solar cells via tailored interfacial engineering. Adv. Energy Mater. (2024).

    [125] D.D. Girolamo, G. Vidon, J. Barichello, F.D. Giacomo, F. Jafarzadeh et al., Breaking 1.7 V open circuit voltage in large area transparent perovskite solar cells using interfaces passivation. Adv. Energy Mater. 14, 2400663 (2024).

    [126] X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230 (2021).

    [127] C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu et al., Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6, 38 (2021).

    [128] S. Sidhik, W. Li, M.H.K. Samani, H. Zhang, Y. Wang et al., Memory seeds enable high structural phase purity in 2D perovskite films for high-efficiency devices. Adv. Mater. 33, 2007176 (2021).

    [129] S. Bhandari, S. Valsalakumar, Y. Chanchangi, P. Selvaraj, T.K. Mallick, Effect of novel graphitic carbon/NiO hole transporting electrode on the photovoltaic and optical performance of semi-transparent perovskite solar cells. RSC Adv. 13, 7380 (2023).

    [130] L. Zuo, X. Shi, W. Fu, A.K.-Y. Jen, Highly efficient semitransparent solar cells with selective absorption and tandem architecture. Adv. Mater. 31, 1901683 (2019).

    [131] F. Liang, Z. Ying, Y. Lin, B. Tu, Z. Zhang et al., High-performance semitransparent and bifacial perovskite solar cells with MoOx/Ag/WOx as the rear transparent electrode. Adv. Mater. Interfaces 7, 2000591 (2020).

    [132] R.F. Bailey-Salzman, B.P. Rand, S.R. Forrest, Semitransparent organic photovoltaic cells. Appl. Phys. Lett. 88, 233502 (2006).

    [133] Y. Dai, Y. Huang, X. He, D. Hui, Y. Bai, Continuous performance assessment of thin-film flexible photovoltaic cells under mechanical loading for building integration. Sol. Energy 183, 96 (2019).

    [134] C. Xu, K. Jin, Z. Xiao, Z. Zhao, Y. Yan et al., Efficient semitransparent layer-by-layer organic photovoltaics via optimizing wide bandgap and narrow absorption polymer layer thickness. Sol. RRL 6, 2200308 (2022).

    [135] B. Park, H. Bae, J.-W. Ha, C. Lee, J. Lee et al., Synthesis of a halogenated low bandgap polymeric donor for semi-transparent and near-infrared organic solar cells. Org. Electron. 113, 106717 (2023).

    [136] W. Liu, S. Sun, L. Zhou, Y. Cui, W. Zhang et al., Design of near-infrared nonfullerene acceptor with ultralow nonradiative voltage loss for high-performance semitransparent ternary organic solar cells. Angew. Chem. Int. Ed. 61, e202116111 (2022).

    [137] X. Duan, Y. Yang, J. Yu, C. Liu, X. Li et al., Solid additive dual-regulates spectral response enabling high-performance semitransparent organic solar cells. Adv. Mater. 36, 2308750 (2024).

    [138] D. Wang, R. Qin, G. Zhou, X. Li, R. Xia et al., High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions. Adv. Mater. 32, 2001621 (2020).

    [139] Z. Hu, J. Wang, Z. Wang, W. Gao, Q. An et al., Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance. Nano Energy 55, 424 (2019).

    [140] H. Shi, R. Xia, G. Zhang, H. Yip, Y. Cao, Spectral engineering of semitransparent polymer solar cells for greenhouse applications. Adv. Energy Mater. 9, 1803438 (2019).

    [141] Y. Xie, L. Huo, B. Fan, H. Fu, Y. Cai et al., High-performance semitransparent ternary organic solar cells. Adv. Funct. Mater. 28, 1800627 (2018).

    [142] M.F. Albab, M. Jahandar, Y.H. Kim, Y.-K. Kim, M. Shin et al., High-performance semi-transparent organic solar cells driven by the dipole-controlled optoelectrical response of bilateral self-assembled monolayer strategy. Nano Energy 121, 109219 (2024).

    [143] D. Xie, Y. Zhang, X. Yuan, Y. Li, F. Huang et al., A 2.20 eV bandgap polymer donor for efficient colorful semitransparent organic solar cells. Adv. Funct. Mater. 33, 2212601 (2023).

    [144] X. Xu, Q. Wei, Z. Zhou, H. He, J. Tian et al., Efficient semitransparent organic solar cells with CRI over 90% enabled by an ultralow-bandgap A-DA’D-A small molecule acceptor. Adv. Funct. Mater. (2023).

    [145] L. Xiao, G. Huang, H. Zhang, X. Zhang, Y. Li et al., Light managements and transparent electrodes for semitransparent organic and perovskite solar cells. Sol. RRL 6, 2100818 (2022).

    [146] K. Khandelwal, S. Biswas, G.D. Sharma, Advancing multifunctional semitransparent organic solar cells through strategic optical layer integration. ACS Appl. Energy Mater. 7, 7085 (2024).

    [147] Y. Li, W. Song, J. Zhang, X. Zhang, Z. Ge, High-performance and mechanically durable semi-transparent organic solar cells with highly transparent active layers. Sci. China Mater. 66, 1719 (2023).

    [148] J. Jing, S. Dong, K. Zhang, Z. Zhou, Q. Xue et al., Semitransparent organic solar cells with efficiency surpassing 15%. Adv. Energy Mater. 12, 2200453 (2022).

    [149] M. Bates, C. Malhado, C. Yang, C.K. Herrera, R.R. Lunt, High efficiency transparent and semi-transparent photovoltaics based on a layer-by-layer deposition. Sol. RRL 7, 2200962 (2023).

    [150] S. Coe, W.-K. Woo, M. Bawendi, V. Bulović, Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800 (2002).

    [151] A.J. Nozik, Quantum dot solar cells. Physica E Low Dimens. Syst. Nanostruct. 14, 115 (2002).

    [152] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford et al., Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180 (2006).

    [153] G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr et al., Colloidal quantum dot solar cells. Chem. Rev. 115, 12732 (2015).

    [154] N. Drolet, presented at 2012 MRS Spring Meeting & Exhibit. Organic photovoltaic: efficiency and lifetime challenges for commercial viability, San Francisco, CA, Moscone West Convention Center, April, 2012.

    [155] S. Liu, K. Xiong, K. Wang, G. Liang, M.-Y. Li et al., Efficiently passivated PbSe quantum dot solids for infrared photovoltaics. ACS Nano 15, 3376 (2021).

    [156] X. Shen, A. Kamath, P. Guyot-Sionnest, Mid-infrared cascade intraband electroluminescence with HgSe–CdSe core–shell colloidal quantum dots. Nat. Photon. 17, 1042 (2023).

    [157] M. Liu, Y. Chen, C.-S. Tan, R. Quintero-Bermudez, A.H. Proppe et al., Lattice anchoring stabilizes solution-processed semiconductors. Nature 570, 96 (2019).

    [158] M. Liu, O. Voznyy, R. Sabatini, F.P. García De Arquer, R. Munir et al., Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258 (2017).

    [159] J. Shi, F. Li, Y. Jin, C. Liu, B. Cohen-Kleinstein et al., In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew. Chem. 132, 22414 (2020).

    [160] D. Chen, T. Wang, P. Kei Ko, J. Shi, M. Liu et al., Sterically controlled synthesis of amine-free CsPbBr3 nanoplatelets for stable, pure-blue light emission. Angew. Chem. Int. Ed. 63, e202317590 (2024).

    [161] M. Albaladejo-Siguan, E.C. Baird, D. Becker-Koch, Y. Li, A.L. Rogach et al., Stability of quantum dot solar cells: a matter of (life)time. Adv. Energy Mater. 11, 2003457 (2021).

    [162] D. Becker-Koch, M. Albaladejo-Siguan, V. Lami, F. Paulus, H. Xiang et al., Ligand dependent oxidation dictates the performance evolution of high efficiency PbS quantum dot solar cells. Sustain. Energy Fuels 4, 108 (2020).

    [163] K. Ji, J. Yuan, F. Li, Y. Shi, X. Ling et al., High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A 8, 8104 (2020).

    [164] X. Zhang, G.E. Eperon, J. Liu, E.M.J. Johansson, Semitransparent quantum dot solar cell. Nano Energy 22, 70 (2016).

    [165] C. Zhang, C. Ji, Y. Park, L.J. Guo, Thin-metal-film-based transparent conductors: material preparation, optical design, and device applications. Adv. Opt. Mater. 9, 2001298 (2021).

    [166] X. Zhang, C. Hägglund, M.B. Johansson, K. Sveinbjörnsson, E.M.J. Johansson, Fine tuned nanolayered metal/metal oxide electrode for semitransparent colloidal quantum dot solar cells. Adv. Funct. Mater. 26, 1921 (2016).

    [167] H. Tavakoli Dastjerdi, P. Qi, Z. Fan, M.M. Tavakoli, Cost-effective and semi-transparent PbS quantum dot solar cells using copper electrodes. ACS Appl. Mater. Interfaces 12, 818 (2020).

    [168] M.M. Tavakoli, M. Nasilowski, J. Zhao, M.G. Bawendi, J. Kong, Efficient semitransparent CsPbI3 quantum dots photovoltaics using a graphene electrode. Small Methods 3, 1900449 (2019).

    [169] Y. Song, S. Chang, S. Gradecak, J. Kong, visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes. Adv. Energy Mater. 6, 1600847 (2016).

    [170] P. Bhatnagar, J. Hong, M. Patel, J. Kim, Transparent photovoltaic skin for artificial thermoreceptor and nociceptor memory. Nano Energy 91, 106676 (2022).

    [171] C.G. Núñez, W.T. Navaraj, E.O. Polat, R. Dahiya, Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27, 1606287 (2017).

    [172] T.T. Nguyen, J. Kim, J. Yi, C.-P. Wong, High-performing UV photodetectors by thermal-coupling transparent photovoltaics. Nano Energy 100, 107504 (2022).

    [173] T.T. Nguyen, M. Patel, S. Kim, R.A. Mir, J. Yi et al., Transparent photovoltaic cells and self-powered photodetectors by TiO2/NiO heterojunction. J. Power. Sources 481, 228865 (2021).

    [174] Y. Liu, J. Wang, F. Wang, Z. Cheng, Y. Fang et al., Full-frame and high-contrast smart windows from halide-exchanged perovskites. Nat. Commun. 12, 3360 (2021).

    [175] D.B. Ritzer, B. Abdollahi Nejand, M.A. Preciado-Ruiz, S. Gharibzadeh, H. Hu et al., Translucent perovskite photovoltaics for building integration. Energy Environ. Sci. (2023).

    [176] C.S. Allardyce, C. Fankhauser, S.M. Zakeeruddin, M. Grätzel et al., The influence of greenhouse-integrated photovoltaics on crop production. Sol. Energy 155, 517 (2017).

    [177] Y. Zhao, Z. Li, C. Deger, M. Wang, M. Peric et al., Achieving sustainability of greenhouses by integrating stable semi-transparent organic photovoltaics. Nat. Sustain. 6, 539 (2023).

    [178] E.J. Stallknecht, C.K. Herrera, C. Yang, I. King, T.D. Sharkey et al., Designing plant–transparent agrivoltaics. Sci. Rep. 13, 1903 (2023).

    [179] M.E. Loik, S.A. Carter, G. Alers, C.E. Wade, D. Shugar et al., Wavelength-selective solar photovoltaic systems: powering greenhouses for plant growth at the food-energy-water nexus. Earth’s Future 5, 1044 (2017).

    [180] Y. Liu, P. Cheng, T. Li, R. Wang, Y. Li et al., Unraveling sunlight by transparent organic semiconductors toward photovoltaic and photosynthesis. ACS Nano 13, 1071 (2019).

    [181] X. Meng, D. Zhang, P. Feng, N. Hu, Review on mechanical behavior of solar cells for building integrated photovoltaics. Sustain. Struct. 1, 9 (2021).

    [182] C. Fankhauser, A. Batschauer, Shadow on the plant: a strategy to exit. Cell 164, 15 (2016).

    [183] R. Waller, M. Kacira, E. Magadley, M. Teitel, I. Yehia, Semi-transparent organic photovoltaics applied as greenhouse shade for spring and summer tomato production in arid climate. Agronomy 11, 1152 (2021).

    [184] W. Song, J. Ge, L. Xie, Z. Chen, Q. Ye et al., Semi-transparent organic photovoltaics for agrivoltaic applications. Nano Energy 116, 108805 (2023).

    [185] S.-Y. Chang, P. Cheng, G. Li, Y. Yang, Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2, 1039 (2018).

    [186] S. Jinnai, A. Oi, T. Seo, T. Moriyama, M. Terashima et al., Green-light wavelength-selective organic solar cells based on poly(3-hexylthiophene) and naphthobisthiadiazole-containing acceptors toward agrivoltaics. ACS Sustain. Chem. Eng. 11, 1548 (2023).

    [187] M. Patel, J.H. Seo, T.T. Nguyen, J. Kim, Active energy-controlling windows incorporating transparent photovoltaics and an integrated transparent heater. Cell Rep. Phys. Sci. 2, 100591 (2021).

    [188] J.H. Jeong, M. Jahandar, A. Prasetio, J.M. Kim, J.H. Kim et al., Multi-dimensional interfacial engineering for a practical large-area transparent flexible organic photovoltaics. Chem. Eng. J. 419, 129672 (2021).

    [189] Y. Xia, X. Liang, Y. Jiang, S. Wang, Y. Qi et al., High-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cells. Adv. Energy Mater. 9, 1900720 (2019).

    [190] P. Bhatnagar, T.T. Nguyen, S. Kim, J.H. Seo, M. Patel et al., Transparent photovoltaic memory for neuromorphic device. Nanoscale 13, 5243 (2021).

    [191] M. Kumar, J. Lim, H. Seo, Highly transparent reconfigurable non-volatile multilevel optoelectronic memory for integrated self-powered brain-inspired perception. Nano Energy 89, 106471 (2021).

    [192] X. Wu, S. Shi, B. Liang, Y. Dong, R. Yang et al., Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing. Sci. Adv. 10, eadn4524 (2024).

    [193] M. Cellura, L.Q. Luu, F. Guarino, S. Longo, A review on life cycle environmental impacts of emerging solar cells. Sci. Total. Environ. 908, 168019 (2024).

    [194] X. Lu, D. Yan, J. Feng, M. Li, B. Hou et al., Ecotoxicity and sustainability of emerging Pb-based photovoltaics. Sol. RRL 6, 2200699 (2022).

    [195] J. Li, H.-L. Cao, W.-B. Jiao, Q. Wang, M. Wei et al., Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 11, 310 (2020).

    Tianle Liu, Munerah M. S. Almutairi, Jie Ma, Aisling Stewart, Zhaohui Xing, Mengxia Liu, Bo Hou, Yuljae Cho. Solution-Processed Thin Film Transparent Photovoltaics: Present Challenges and Future Development[J]. Nano-Micro Letters, 2025, 17(1): 049
    Download Citation