• Acta Optica Sinica (Online)
  • Vol. 2, Issue 5, 0502001 (2025)
Hongxing Dong1,2,*, Linqi Chen1,**, Xinjie Li1, Zhanpeng Wang1,2..., Jingzhou Li2,***, Zeyi Wang1,2 and Xuting Chen1|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang , China
  • show less
    DOI: 10.3788/AOSOL240466 Cite this Article Set citation alerts
    Hongxing Dong, Linqi Chen, Xinjie Li, Zhanpeng Wang, Jingzhou Li, Zeyi Wang, Xuting Chen. Progress of Superfluorescence in Perovskite Quantum Dot Superlattices (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(5): 0502001 Copy Citation Text show less
    References

    [1] Dicke R H. Coherence in spontaneous radiation processes[J]. Physical Review, 93, 99-110(1954).

    [2] Skribanowitz N, Herman I P, MacGillivray J C et al. Observation of Dicke superradiance in optically pumped HF gas[J]. Physical Review Letters, 30, 309-312(1973).

    [3] Florian R, Schwan L O, Schmid D. Time-resolving experiments on Dicke superfluorescence of O2- centers in KCl. Two-color superfluorescence[J]. Physical Review A, 29, 2709-2715(1984).

    [4] Dai D C, Monkman A P. Observation of superfluorescence from a quantum ensemble of coherent excitons in a ZnTe crystal: evidence for spontaneous Bose‒Einstein condensation of excitons[J]. Physical Review B, 84, 115206(2011).

    [5] Timothy Noe G, Kim J H, Lee J et al. Giant superfluorescent bursts from a semiconductor magneto-plasma[J]. Nature Physics, 8, 219-224(2012).

    [6] Jho Y D, Wang X, Ze D H R et al. Observation of superfluorescence from quantum dots created in strong magnetic fields[C], FWF2(2005).

    [7] Protesescu L, Yakunin S, Bodnarchuk M I et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 15, 3692-3696(2015).

    [8] Strandell D, Dirin D, Zenatti D et al. Enhancing multiexcitonic emission in metal-halide perovskites by quantum confinement[J]. ACS Nano, 17, 24910-24918(2023).

    [9] Utzat H, Sun W W, Kaplan A E K et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots[J]. Science, 363, 1068-1072(2019).

    [10] Zhao H G. Perovskite quantum dots based luminescent solar concentrators[M]. Perovskite quantum dots, 303, 219-242(2020).

    [11] Wang C W, Oyeka E E, Altman A B et al. Effects of pressure on exciton absorption and emission in strongly quantum-confined CsPbBr3 quantum dots and nanoplatelets[J]. The Journal of Physical Chemistry C, 128, 2062-2069(2024).

    [12] Becker M A, Scarpelli L, Nedelcu G et al. Long exciton dephasing time and coherent phonon coupling in CsPbBr2Cl perovskite nanocrystals[J]. Nano Letters, 18, 7546-7551(2018).

    [13] Becker M A, Vaxenburg R, Nedelcu G et al. Bright triplet excitons in caesium lead halide perovskites[J]. Nature, 553, 189-193(2018).

    [14] Rainò G, Becker M A, Bodnarchuk M I et al. Superfluorescence from lead halide perovskite quantum dot superlattices[J]. Nature, 563, 671-675(2018).

    [15] Zhou C, Zhong Y C, Dong H X et al. Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities[J]. Nature Communications, 11, 329(2020).

    [16] Chi W G, Banerjee S K. Performance improvement of perovskite solar cells by interactions between nano-sized quantum dots and perovskite[J]. Advanced Functional Materials, 32, 2200029(2022).

    [17] Kim J, Kwon T, Kim Y. Surface manipulation and engineering strategies for high-performance and multi-functional perovskite colloidal quantum dot solar cells[J]. Chemical Engineering Journal, 498, 155674(2024).

    [18] Xiao S H, Mei X Y, Zhang X L. Surface matrix regulation of perovskite quantum dots for efficient solar cells[J]. Energy & Environmental Science, 17, 5756-5794(2024).

    [19] Li Y F, Feng J, Sun H B. Perovskite quantum dots for light-emitting devices[J]. Nanoscale, 11, 19119-19139(2019).

    [20] Bai Y, Hao M M, Ding S S et al. Surface chemistry engineering of perovskite quantum dots: strategies, applications, and perspectives[J]. Advanced Materials, 34, 2105958(2022).

    [21] Qaid S M H, Ghaithan H M, Ali Al-Asbahi B et al. Investigation of the surface passivation effect on the optical properties of CsPbBr3 perovskite quantum dots[J]. Surfaces and Interfaces, 23, 100948(2021).

    [22] Eisler C N et al. Superfluorescence from lead halide perovskite quantum dot superlattices: structure-driven tunability[J]. Nanophotonics, 13, 91-102(2024).

    [23] Baranov D, Fieramosca A, Yang R X et al. Aging of self-assembled lead halide perovskite nanocrystal superlattices: effects on photoluminescence and energy transfer[J]. ACS Nano, 15, 650-664(2021).

    [24] Wang Q Q, Tan J Q, Jie Q et al. Perturbation-driven echo-like superfluorescence in perovskite superlattices[J]. Advanced Photonics, 5, 055001(2023).

    [25] Mao D Q, Chen L Q, Sun Z et al. Observation of transition from superfluorescence to polariton condensation in CsPbBr3 quantum dots film[J]. Light: Science & Applications, 13, 34(2024).

    [26] Dey A, Ye J Z, De A et al. State of the art and prospects for halide perovskite nanocrystals[J]. ACS Nano, 15, 10775-10981(2021).

    [27] Wu H D, Wang Q, Zhang A et al. One-dimensional scintillator film with benign grain boundaries for high-resolution and fast X-ray imaging[J]. Science Advances, 9, eadh1789(2023).

    [28] Ahn N, Livache C, Pinchetti V et al. Colloidal semiconductor nanocrystal lasers and laser diodes[J]. Chemical Reviews, 123, 8251-8296(2023).

    [29] Kim J Y, Lee J W, Jung H S et al. High-efficiency perovskite solar cells[J]. Chemical Reviews, 120, 7867-7918(2020).

    [30] Sun W D, Yun R, Liu Y L et al. Ligands in lead halide perovskite nanocrystals: from synthesis to optoelectronic applications[J]. Small, 19, 2205950(2023).

    [31] Kojima A, Teshima K, Shirai Y et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [32] Huang H, Bodnarchuk M I, Kershaw S V et al. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance[J]. ACS Energy Letters, 2, 2071-2083(2017).

    [33] Kovalenko M V, Bodnarchuk M I. Lead halide perovskite nanocrystals: from discovery to self-assembly and applications[J]. Chimia, 71, 461(2017).

    [34] Liu Z, Qin X, Chen Q H et al. Metal-halide perovskite nanocrystal superlattice: self-assembly and optical fingerprints[J]. Advanced Materials, 35, 2209279(2023).

    [35] Nie Z H, Petukhova A, Kumacheva E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles[J]. Nature Nanotechnology, 5, 15-25(2010).

    [36] Guo Y G, Wang Q, Saidi W A. Structural stabilities and electronic properties of high-angle grain boundaries in perovskite cesium lead halides[J]. The Journal of Physical Chemistry C, 121, 1715-1722(2017).

    [37] Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3[J]. The Journal of Physical Chemistry Letters, 8, 489-493(2017).

    [38] Clinckemalie L, Valli D, Roeffaers M B J et al. Challenges and opportunities for CsPbBr3 perovskites in low- and high-energy radiation detection[J]. ACS Energy Letters, 6, 1290-1314(2021).

    [39] Xie M Y, Zhu Y C, Wang R M et al. High efficiency and narrow emission band pure-red perovskite colloidal quantum wells[J]. The Journal of Physical Chemistry Letters, 12, 10735-10741(2021).

    [40] Dutta A, Behera R K, Pal P et al. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals: a generic synthesis approach[J]. Angewandte Chemie International Edition, 58, 5552-5556(2019).

    [41] Imran M, Ijaz P, Baranov D et al. Shape-pure, nearly monodispersed CsPbBr3 nanocubes prepared using secondary aliphatic amines[J]. Nano Letters, 18, 7822-7831(2018).

    [42] Li X M, Wu Y, Zhang S L et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 26, 2435-2445(2016).

    [43] Ren Z W, Wang K, Sun X W et al. Strategies toward efficient blue perovskite light-emitting diodes[J]. Advanced Functional Materials, 31, 2100516(2021).

    [44] Jiang Y Z, Qin C C, Cui M H et al. Spectra stable blue perovskite light-emitting diodes[J]. Nature Communications, 10, 1868(2019).

    [45] Zhao Y M, Riemersma C, Pietra F et al. High-temperature luminescence quenching of colloidal quantum dots[J]. ACS Nano, 6, 9058-9067(2012).

    [46] Ren J J, Zhou X P, Wang Y H. Dual-emitting CsPbX3@ZJU-28 (X=Cl, Br, I) composites with enhanced stability and unique optical properties for multifunctional applications[J]. Chemical Engineering Journal, 391, 123622(2020).

    [47] Milot R L, Eperon G E, Snaith H J et al. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films[J]. Advanced Functional Materials, 25, 6218-6227(2015).

    [48] Ravi V K, Swarnkar A, Chakraborty R et al. Excellent green but less impressive blue luminescence from CsPbBr3 perovskite nanocubes and nanoplatelets[J]. Nanotechnology, 27, 325708(2016).

    [49] Pan A Z, He B, Fan X Y et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors[J]. ACS Nano, 10, 7943-7954(2016).

    [50] Dong Y T, Qiao T, Kim D et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium[J]. Nano Letters, 18, 3716-3722(2018).

    [51] Li H Z, Zhao G L, Song B et al. Suppressing growth strategy on synthesizing stable and high-quality blue-emitting CsPbBr3 quantum dots[J]. ACS Applied Optical Materials, 1, 1263-1271(2023).

    [52] Wang Z P, Hou L Y, Li J Z et al. Synthesis and optical wireless communication application of high efficiency extreme blue CsPbBr3 nanoplates[J]. Journal of Materials Chemistry C, 12, 5370-5376(2024).

    [53] Imran M, Caligiuri V, Wang M J et al. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals[J]. Journal of the American Chemical Society, 140, 2656-2664(2018).

    [54] Hoffman J B, Schleper A L, Kamat P V. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3-x through halide exchange[J]. Journal of the American Chemical Society, 138, 8603-8611(2016).

    [55] Shamsi J, Dang Z Y, Bianchini P et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range[J]. Journal of the American Chemical Society, 138, 7240-7243(2016).

    [56] Zhang X Y, Lin H, Huang H et al. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer[J]. Nano Letters, 16, 1415-1420(2016).

    [57] Bekenstein Y, Koscher B A, Eaton S W et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies[J]. Journal of the American Chemical Society, 137, 16008-16011(2015).

    [58] Tao H C, Wu T Y, Aldeghi M et al. Nanoparticle synthesis assisted by machine learning[J]. Nature Reviews Materials, 6, 701-716(2021).

    [59] Park J, Kim Y M, Hong S et al. Closed-loop optimization of nanoparticle synthesis enabled by robotics and machine learning[J]. Matter, 6, 677-690(2023).

    [60] Pollice R, dos Passos Gomes G, Aldeghi M et al. Data-driven strategies for accelerated materials design[J]. Accounts of Chemical Research, 54, 849-860(2021).

    [61] Myung C W, Hajibabaei A, Cha J H et al. Challenges, opportunities, and prospects in metal halide perovskites from theoretical and machine learning perspectives[J]. Advanced Energy Materials, 12, 2202279(2022).

    [62] Xu S, Ziegler J, Nann T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals[J]. Journal of Materials Chemistry, 18, 2653-2656(2008).

    [63] Gao Y, Peng X G. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands[J]. Journal of the American Chemical Society, 137, 4230-4235(2015).

    [64] Pu C D, Peng X G. To battle surface traps on CdSe/CdS core/shell nanocrystals: shell isolation versus surface treatment[J]. Journal of the American Chemical Society, 138, 8134-8142(2016).

    [65] Pu C D, Qin H Y, Gao Y et al. Synthetic control of exciton behavior in colloidal quantum dots[J]. Journal of the American Chemical Society, 139, 3302-3311(2017).

    [66] Liu X K, Xu W D, Bai S et al. Metal halide perovskites for light-emitting diodes[J]. Nature Materials, 20, 10-21(2021).

    [67] De Roo J, Ibáñez M, Geiregat P et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J]. ACS Nano, 10, 2071-2081(2016).

    [68] Wang C J, Chesman A S R, Jasieniak J J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid[J]. Chemical Communications, 53, 232-235(2017).

    [69] Tan Y S, Zou Y T, Wu L Z et al. Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes[J]. ACS Applied Materials & Interfaces, 10, 3784-3792(2018).

    [70] Yang D D, Li X M, Zhou W H et al. CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification[J]. Advanced Materials, 31, 1900767(2019).

    [71] Shynkarenko Y, Bodnarchuk M I, Bernasconi C et al. Direct synthesis of quaternary alkylammonium-capped perovskite nanocrystals for efficient blue and green light-emitting diodes[J]. ACS Energy Letters, 4, 2703-2711(2019).

    [72] Krieg F, Ochsenbein S T, Yakunin S et al. Colloidal CsPbX3 (X=Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability[J]. ACS Energy Letters, 3, 641-646(2018).

    [73] Shi J W, Li F C, Jin Y et al. In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes[J]. Angewandte Chemie International Edition, 59, 22230-22237(2020).

    [74] Grisorio R, Fasulo F, Muñoz-García A B et al. In situ formation of zwitterionic ligands: changing the passivation paradigms of CsPbBr3 nanocrystals[J]. Nano Letters, 22, 4437-4444(2022).

    [75] Mir W J, Alamoudi A, Yin J et al. Lecithin capping ligands enable ultrastable perovskite-phase CsPbI3 quantum dots for rec. 2020 bright-red light-emitting diodes[J]. Journal of the American Chemical Society, 144, 13302-13310(2022).

    [76] Pan J, Sarmah S P, Murali B et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission[J]. The Journal of Physical Chemistry Letters, 6, 5027-5033(2015).

    [77] Imran M, Ijaz P, Goldoni L et al. Simultaneous cationic and anionic ligand exchange for colloidally stable CsPbBr3 nanocrystals[J]. ACS Energy Letters, 4, 819-824(2019).

    [78] Koscher B A, Swabeck J K, Bronstein N D et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment[J]. Journal of the American Chemical Society, 139, 6566-6569(2017).

    [79] Zhao H F, Chen H T, Bai S et al. High-brightness perovskite light-emitting diodes based on FAPbBr3 nanocrystals with rationally designed aromatic ligands[J]. ACS Energy Letters, 6, 2395-2403(2021).

    [80] Wang H, Sui N, Bai X et al. Emission recovery and stability enhancement of inorganic perovskite quantum dots[J]. The Journal of Physical Chemistry Letters, 9, 4166-4173(2018).

    [81] Hassan Y, Park J H, Crawford M L et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs[J]. Nature, 591, 72-77(2021).

    [82] Pan J, Shang Y Q, Yin J et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes[J]. Journal of the American Chemical Society, 140, 562-565(2018).

    [83] Zhou C, Pina J M, Zhu T et al. Quantum dot self-assembly enables low-threshold lasing[J]. Advanced Science, 8, 2101125(2021).

    [84] Lapointe V, Green P B, Chen A N et al. Long live(d) CsPbBr3 superlattices: colloidal atomic layer deposition for structural stability[J]. Chemical Science, 15, 4510-4518(2024).

    [85] Li X W, Cai W S, Guan H L et al. Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication[J]. Chemical Engineering Journal, 419, 129551(2021).

    [86] Li Y, Zhang F. Self-assembly of perovskite nanocrystals: from driving forces to applications[J]. Journal of Energy Chemistry, 88, 561-578(2024).

    [87] Bodnarchuk M I, Kovalenko M V, Heiss W et al. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor[J]. Journal of the American Chemical Society, 132, 11967-11977(2010).

    [88] Cherniukh I, Rainò G, Stöferle T et al. Perovskite-type superlattices from lead halide perovskite nanocubes[J]. Nature, 593, 535-542(2021).

    [89] Lapkin D, Kirsch C, Hiller J et al. Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals[J]. Nature Communications, 13, 892(2022).

    [90] van der Burgt J S, Geuchies J J, van der Meer B et al. Cuboidal supraparticles self-assembled from cubic CsPbBr3 perovskite nanocrystals[J]. The Journal of Physical Chemistry C, 122, 15706-15712(2018).

    [91] Chen L Q, Hu Y J, Zhou B E et al. Solvent-mediated structural evolution in colloidal lead halide perovskite nanocrystals self-assembly[J]. Advanced Materials Interfaces, 9, 2200187(2022).

    [92] Jana A, Jo Y, Im H. Multicomponent perovskite superlattices[J]. Matter, 4, 2607-2609(2021).

    [93] Clark D E, Lumsargis V A, Blach D D et al. Quantifying structural heterogeneity in individual CsPbBr3 quantum dot superlattices[J]. Chemistry of Materials, 34, 10200-10207(2022).

    [94] Tong Y, Yao E P, Manzi A et al. Spontaneous self-assembly of perovskite nanocrystals into electronically coupled supercrystals: toward filling the green gap[J]. Advanced Materials, 30, 1801117(2018).

    [95] Kobiyama E, Urbonas D, Bodnarchuk M I et al. Ultrafast photoluminescence dynamics in templated self-assemblies of perovskite nanocrystals[J]. Proceedings of SPIE, 12884, 1288405(2024).

    [96] Cherniukh I, Sekh T V, Rainò G et al. Structural diversity in multicomponent nanocrystal superlattices comprising lead halide perovskite nanocubes[J]. ACS Nano, 16, 7210-7232(2022).

    [97] Zhu C L, Nguyen T, Boehme S C et al. Many-body correlations and exciton complexes in CsPbBr3 quantum dots[J]. Advanced Materials, 35, 2208354(2023).

    [98] Zasedatelev A V, Baranikov A V, Sannikov D et al. Single-photon nonlinearity at room temperature[J]. Nature, 597, 493-497(2021).

    [99] Su R, Fieramosca A, Zhang Q et al. Perovskite semiconductors for room-temperature exciton-polaritonics[J]. Nature Materials, 20, 1315-1324(2021).

    [100] Sekh T V, Cherniukh I, Kobiyama E et al. All-perovskite multicomponent nanocrystal superlattices[J]. ACS Nano, 18, 8423-8436(2024).

    [101] Corricelli M, Altamura D, Curri M L et al. GISAXS and GIWAXS study on self-assembling processes of nanoparticle based superlattices[J]. CrystEngComm, 16, 9482-9492(2014).

    [102] Baranov D, Toso S, Imran M et al. Investigation into the photoluminescence red shift in cesium lead bromide nanocrystal superlattices[J]. The Journal of Physical Chemistry Letters, 10, 655-660(2019).

    [103] Schlipf J, Müller-Buschbaum P. Structure of organometal halide perovskite films as determined with grazing-incidence X-ray scattering methods[J]. Advanced Energy Materials, 7, 1700131(2017).

    [104] Toso S, Baranov D, Filippi U et al. Collective diffraction effects in perovskite nanocrystal superlattices[J]. Accounts of Chemical Research, 56, 66-76(2023).

    [105] Toso S, Baranov D, Altamura D et al. Multilayer diffraction reveals that colloidal superlattices approach the structural perfection of single crystals[J]. ACS Nano, 15, 6243-6256(2021).

    [106] Krieg F, Sercel P C, Burian M et al. Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies[J]. ACS Central Science, 7, 135-144(2021).

    [107] Jiang Y Z, Sun C J, Xu J et al. Synthesis-on-substrate of quantum dot solids[J]. Nature, 612, 679-684(2022).

    [108] Ye J Z, Ren A B, Dai L J et al. Direct linearly polarized electroluminescence from perovskite nanoplatelet superlattices[J]. Nature Photonics, 18, 586-594(2024).

    [109] Cong K K, Zhang Q, Wang Y R et al. Dicke superradiance in solids[J]. Journal of the Optical Society of America B, 33, C80-C101(2016).

    [110] Scheibner M, Schmidt T, Worschech L et al. Superradiance of quantum dots[J]. Nature Physics, 3, 106-110(2007).

    [111] Heinzen D J, Thomas J E, Feld M S. Coherent ringing in superfluorescence[J]. Physical Review Letters, 54, 677-680(1985).

    [112] Bransden B H. Atomic rearrangement collisions[M]. Advances in atomic and molecular physics, 1, 85-148(1965).

    [113] Blach D D, Lumsargis V A, Clark D E et al. Superradiance and exciton delocalization in perovskite quantum dot superlattices[J]. Nano Letters, 22, 7811-7818(2022).

    [114] Hu Y S, Mao D Q, Chen L Q et al. Cavity-enhanced superfluorescence stimulates coherent energy transfer in a perovskite quantum dot superlattice[J]. Laser & Photonics Reviews, 18, 2400650(2024).

    [115] Ge L, Feng L, Schwefel H G L. Optical microcavities: new understandings and developments[J]. Photonics Research, 5, OM1-OM3(2017).

    [116] Najer D, Söllner I, Sekatski P et al. A gated quantum dot strongly coupled to an optical microcavity[J]. Nature, 575, 622-627(2019).

    [117] Temnov V V, Woggon U. Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity[J]. Physical Review Letters, 95, 243602(2005).

    [118] Zhong Y C, Zhou C, Hou L Y et al. Ultrafast optical properties of cavity-enhanced superfluorescence[J]. Advanced Optical Materials, 10, 2102290(2022).

    [119] Chen L Q, Mao D Q, Hu Y J et al. Stable and ultrafast blue cavity-enhanced superfluorescence in mixed halide perovskites[J]. Advanced Science, 10, 2301589(2023).

    [120] Li X J, Chen L Q, Mao D Q et al. Low-threshold cavity-enhanced superfluorescence in polyhedral quantum dot superparticles[J]. Nanoscale Advances, 6, 3220-3228(2024).

    [121] Xie Z Y, Liu D, Gao C et al. High-mobility emissive organic semiconductors: an emerging class of multifunctional materials[J]. Nature Reviews Materials, 9, 837-839(2024).

    [122] Chumakov A I, Baron A Q R, Sergueev I et al. Superradiance of an ensemble of nuclei excited by a free electron laser[J]. Nature Physics, 14, 261-264(2018).

    [123] Imamog¯lu A, Ram R J, Pau S et al. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers[J]. Physical Review A, 53, 4250-4253(1996).

    [124] Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose‒Einstein condensation[J]. Reviews of Modern Physics, 82, 1489-1537(2010).

    [125] Su R, Diederichs C, Wang J et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets[J]. Nano Letters, 17, 3982-3988(2017).

    [126] De J B, Zhao R Y, Yin F et al. Organic polaritonic light-emitting diodes with high luminance and color purity toward laser displays[J]. Light: Science & Applications, 13, 191(2024).

    [127] Li H, Chen F, Jia H Y et al. All-optical temporal logic gates in localized exciton polaritons[J]. Nature Photonics, 18, 864-869(2024).

    [128] Kim J H, Aghaeimeibodi S, Richardson C J K et al. Super-radiant emission from quantum dots in a nanophotonic waveguide[J]. Nano Letters, 18, 4734-4740(2018).

    [129] Rastogi A, Saglamyurek E, Hrushevskyi T et al. Superradiance-mediated photon storage for broadband quantum memory[J]. Physical Review Letters, 129, 120502(2022).

    [130] Baranes G, Gorlach A, Ruimy R et al. Generating quantum light: new prospects from superradiance[C], FM3B.4(2022).

    [131] Be'er O, Gorlach A, Nagel A et al. Free-electron triggered superfluorescence for resolving collective optical properties of quantum materials[C], STh2O.5(2022).

    [132] Ren H, Mu Y N, Du P et al. Luminescence mechanism of perovskite quantum dot films pumped by electron beam[J]. Acta Optica Sinica, 42, 1927001(2022).

    [133] Dirin D N, Benin B M, Yakunin S et al. Microcarrier-assisted inorganic shelling of lead halide perovskite nanocrystals[J]. ACS Nano, 13, 11642-11652(2019).

    [134] Zhou Y Y, Zhou H, Deng J J et al. Decisive structural and functional characterization of halide perovskites with synchrotron[J]. Matter, 2, 360-377(2020).

    [135] Chatterjee A, Brasel S, Bruncz A et al. Progress and prospects of quantum emission from perovskites[J]. MRS Communications, 14, 1015-1026(2024).

    [136] Wei Y, Cheng Z Y, Lin J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chemical Society Reviews, 48, 310-350(2019).

    [137] Xu L, Yuan S, Zeng H et al. A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes[J]. Materials Today Nano, 6, 100036(2019).

    [138] Mehta A, Im J, Kim B H et al. Stabilization of lead‒tin-alloyed inorganic‒organic halide perovskite quantum dots[J]. ACS Nano, 12, 12129-12139(2018).

    [139] Mattiotti F, Kuno M, Borgonovi F et al. Thermal decoherence of superradiance in lead halide perovskite nanocrystal superlattices[J]. Nano Letters, 20, 7382-7388(2020).

    [140] Pashaei Adl H, Gorji S, Muñoz-Matutano G et al. Superradiance emission and its thermal decoherence in lead halide perovskites superlattices[J]. Advanced Optical Materials, 11, 2202497(2023).

    [141] Zhu J Y, Li Y X, Lin X Y et al. Coherent phenomena and dynamics of lead halide perovskite nanocrystals for quantum information technologies[J]. Nature Materials, 23, 1027-1040(2024).

    Hongxing Dong, Linqi Chen, Xinjie Li, Zhanpeng Wang, Jingzhou Li, Zeyi Wang, Xuting Chen. Progress of Superfluorescence in Perovskite Quantum Dot Superlattices (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(5): 0502001
    Download Citation