• Journal of Inorganic Materials
  • Vol. 38, Issue 2, 137 (2023)
Bing XIE*, Jinxia CAI, Tongtong WANG, Zhiyong LIU..., Shenglin JIANG and Haibo ZHANG|Show fewer author(s)
DOI: 10.15541/jim20220343 Cite this Article
Bing XIE, Jinxia CAI, Tongtong WANG, Zhiyong LIU, Shenglin JIANG, Haibo ZHANG. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density[J]. Journal of Inorganic Materials, 2023, 38(2): 137 Copy Citation Text show less
References

[1] X ZHANG, B W LI, L DONG et al. Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Advanced Materials Interfaces, 1800096(2018). https://onlinelibrary.wiley.com/doi/10.1002/admi.201800096

[2] D Q TAN. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Advanced Functional Materials, 1808567(2020). https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808567

[3] B XIE, Q WANG, Q ZHANG et al. High energy storage performance of PMMA nanocomposites utilizing hierarchically structured nanowires based on interface engineering. ACS Applied Materials & Interfaces, 27382(2021).

[4] X HUANG, B SUN, Y ZHU et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progress in Materials Science, 187(2019).

[5] M Z YANG, J Y JIANG, Y SHEN. Progress in the research of high energy density dielectric energy storage materials. Journal of Silicates, 1249(2021).

[6] Z HAN, Q WANG. Recent progress on dielectric polymers and composites for capacitive energy storage. iEnergy, 50(2022). https://ieeexplore.ieee.org/document/9762237/

[7] H HU, F ZHANG, S LUO et al. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy, 104844(2020).

[8] M GUO, J JIANG, Z SHEN et al. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Materials Today, 49(2019). https://linkinghub.elsevier.com/retrieve/pii/S1369702119302214

[9] B XIE, H ZHANG, Q ZHANG et al. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. Journal of Materials Chemistry A, 6070(2017). http://xlink.rsc.org/?DOI=C7TA00513J

[10] C ZHAO, Y HUANG, J WU. Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat, 1163(2020). https://onlinelibrary.wiley.com/doi/10.1002/inf2.12147

[11] L LI, B XIE, Z LIU et al. Improved energy storage performance of Ba0.4Sr0.6TiO3 by doping high polarization BiFeO3. Ceramics International, 14647(2021). https://linkinghub.elsevier.com/retrieve/pii/S0272884221004016

[12] Z DAI, J XIE, W LIU et al. Effective strategy to achieve excellent energy storage properties in lead-free BaTiO3-based bulk ceramics. ACS Applied Materials & Interfaces, 30289(2020).

[13] H YANG, F YAN, Y LIN et al. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. Journal of the European Ceramic Society, 1367(2018). https://linkinghub.elsevier.com/retrieve/pii/S0955221917308087

[14] Q ZHANG, H TONG, J CHEN et al. High recoverable energy density over a wide temperature range in Sr modified (Pb,La)-(Zr,Sn,Ti)O3 antiferroelectric ceramics with an orthorhombic phase. Applied Physics Letters, 262901(2016). http://aip.scitation.org/doi/10.1063/1.4973425

[15] Q ZHANG, V BHARTI, G KAVARNOS. Poly(vinylidene fluoride) (PVDF) and its copolymers. Encyclopedia of Smart Materials, 234(2002).

[16] B Q WAN, M S ZHENG, J W CHA. Advances in polyimide composite energy storage dielectric materials. Insulation Materials, 23(2021).

[17] B XIE, Q ZHANG, L ZHANG et al. Ultrahigh discharged energy density in polymer nanocomposites by designing linear/ferroelectric bilayer heterostructure. Nano Energy, 437(2018). https://linkinghub.elsevier.com/retrieve/pii/S2211285518307687

[18] J B PING, Q K FENF, M M ZHENG et al. Preparation and dielectric/energy storage properties of surface-modified polypropylene films. Insulation Materials, 49(2022).

[19] Y THAKUR, B ZHANG, R DONG et al. Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering. Nano Energy, 73(2017). https://linkinghub.elsevier.com/retrieve/pii/S2211285516305845

[20] T ZHANG, X ZHAO, C ZHANG et al. Polymer nanocomposites with excellent energy storage performances by utilizing the dielectric properties of inorganic fillers. Chemical Engineering Journal, 127314(2021). https://linkinghub.elsevier.com/retrieve/pii/S1385894720334380

[21] J WANG, S H LIU, C Q CHEN et al. Interfacial modification and energy storage properties of barium titanate-based/polyvinylidene fluoride composite dielectric materials. Journal of Physics, 59(2020).

[22] Y LI, Y ZHOU, Y ZHU et al. Polymer nanocomposites with high energy density and improved charge-discharge efficiency utilizing hierarchically-structured nanofillers. Journal of Materials Chemistry A, 6576(2020). http://xlink.rsc.org/?DOI=D0TA01380C

[23] B XIE, T WANG, J CAI et al. High energy density of ferroelectric polymer nanocomposites utilizing PZT@SiO2 nanocubes with morphotropic phase boundary. Chemical Engineering Journal, 134659(2022). https://linkinghub.elsevier.com/retrieve/pii/S138589472200167X

[24] P J WANG, D ZHOU, H H GUO et al. Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core-shell BaTiO3@MgO structures as the filler. Journal of Materials Chemistry A, 11124(2020). http://xlink.rsc.org/?DOI=D0TA03304A

[25] Z PAN, L YAO, J ZHAI et al. Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. Journal of Materials Chemistry A, 13259(2016). http://xlink.rsc.org/?DOI=C6TA05233A

[26] F LIU, Q LI, J CUI et al. High-energy-density dielectric polymer nanocomposites with trilayered architecture. Advanced Functional Materials, 1606292(2017). https://onlinelibrary.wiley.com/doi/10.1002/adfm.201606292

[27] X LIANG, X YU, L LV et al. BaTiO3 internally decorated hollow porous carbon hybrids as fillers enhancing dielectric and energy storage performance of sandwich-structured polymer composite. Nano Energy, 104351(2020). https://linkinghub.elsevier.com/retrieve/pii/S2211285519310584

[28] Y WANG, J CUI, Q YUAN et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Advanced Materials, 6658(2015).

[29] J JIANG, Z SHEN, J QIAN et al. Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Materials, 213(2019). https://linkinghub.elsevier.com/retrieve/pii/S2405829718308389

[30] X M JI, B Z SUN, C LI et al. Research progress on enhancing dielectric energy storage density of polymer matrix composites using multilayer thin film technology. Materials Guide, 185(2022).

[31] Y WANG, J CHEN, Y LI et al. Multilayered hierarchical polymer composites for high energy density capacitors. Journal of Materials Chemistry A, 2965(2019). http://xlink.rsc.org/?DOI=C8TA11392K

[32] Y NIU, J DONG, Y HE et al. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface. Nano Energy, 107215(2022). https://linkinghub.elsevier.com/retrieve/pii/S2211285522002968

[33] M FENG, Y FENG, T ZHANG et al. Recent advances in multilayer- structure dielectrics for energy storage application. Advanced Science, 2102221(2021). https://onlinelibrary.wiley.com/doi/10.1002/advs.202102221

[34] Q SUN, J WANG, L ZHANG et al. Achieving high energy density and discharge efficiency in multi-layered PVDF-PMMA nanocomposites composed of 0D BaTiO3 and 1D NaNbO3@SiO2. Journal of Materials Chemistry C, 7211(2020). http://xlink.rsc.org/?DOI=D0TC00838A

[35] J CHEN, Y WANG, Q YUAN et al. Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge- discharge efficiency. Nano Energy, 288(2018). https://linkinghub.elsevier.com/retrieve/pii/S2211285518307456

[36] W ZHANG, F GUAN, M JIANG et al. Enhanced energy storage performance of all-organic sandwich structured dielectrics with FPE and P(VDF-HFP). Composites Part A: Applied Science and Manufacturing, 107018(2022).

[37] B LUO, X WANG, H WANG et al. P(VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency. Composites Science and Technology, 94(2017). https://linkinghub.elsevier.com/retrieve/pii/S0266353817313362

[38] Y WANG, L WANG, Q YUAN et al. Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization. Nano Energy, 364(2018). https://linkinghub.elsevier.com/retrieve/pii/S2211285517307917

[39] B XIE, Y ZHU, M A MARWAT et al. Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers. Journal of Materials Chemistry A, 20356(2018). http://xlink.rsc.org/?DOI=C8TA07364C

[40] Y ZHU, Y ZHU, X HUANG et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Advanced Energy Materials, 1901826(2019). https://onlinelibrary.wiley.com/doi/10.1002/aenm.201901826

[41] Q LI, G ZHANG, F LIU et al. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy & Environmental Science, 922(2015).

[42] D AI, H LI, Y ZHOU et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Advanced Energy Materials, 1903881(2020). https://onlinelibrary.wiley.com/doi/10.1002/aenm.201903881

[43] S CHEN, G MENG, B KONG et al. Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chemical Engineering Journal, 123662(2020). https://linkinghub.elsevier.com/retrieve/pii/S1385894719330773

[44] W MIAO, H CHEN, Z PAN et al. Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage. Composites Science and Technology, 108501(2021). https://linkinghub.elsevier.com/retrieve/pii/S0266353820322910

[45] L SUN, Z SHI, B HE et al. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting advanced energy storage capacitors. Advanced Functional Materials, 2100280(2021). https://onlinelibrary.wiley.com/doi/10.1002/adfm.202100280

[46] Y WANG, L WANG, Q YUAN et al. Ultrahigh electric displacement and energy density in gradient layer-structured BaTiO3/PVDF nanocomposites with an interfacial barrier effect. Journal of Materials Chemistry A, 10849(2017). http://xlink.rsc.org/?DOI=C7TA01522D

[47] Y WANG, Y LI, L WANG et al. Gradient-layered polymer nanocomposites with significantly improved insulation performance for dielectric energy storage. Energy Storage Materials, 626(2020). https://linkinghub.elsevier.com/retrieve/pii/S2405829718314016

[48] J JIANG, Z SHEN, J QIAN et al. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy, 220(2019). https://linkinghub.elsevier.com/retrieve/pii/S2211285519304446

[49] M FENG, Q CHI, Y FENG et al. High energy storage density and efficiency in aligned nanofiber filled nanocomposites with multilayer structure. Composites Part B: Engineering, 108206(2020). https://linkinghub.elsevier.com/retrieve/pii/S135983682033256X

[50] Y ZENG, Z H SHEN, Y SHEN et al. High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation. Applied Physics Letters, 103902(2018). http://aip.scitation.org/doi/10.1063/1.5012006

Bing XIE, Jinxia CAI, Tongtong WANG, Zhiyong LIU, Shenglin JIANG, Haibo ZHANG. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density[J]. Journal of Inorganic Materials, 2023, 38(2): 137
Download Citation