• Laser & Optoelectronics Progress
  • Vol. 60, Issue 17, 1706004 (2023)
Yukun Zhang1, Zhaoyun Li1,2,**, Zhiyong Tao1, and Yaxian Fan1,*
Author Affiliations
  • 1Guangxi Key Laboratory of Wireless Windband Communication and Signal Processing, Guilin University of Electronic Technology, Guilin 541004, Guangxi , China
  • 2The 34th Research Institute of China Electronics Technology Group Corporation, Guilin 541004, Guangxi , China
  • show less
    DOI: 10.3788/LOP222405 Cite this Article Set citation alerts
    Yukun Zhang, Zhaoyun Li, Zhiyong Tao, Yaxian Fan. Long-Range Optical Chaos Synchronization Based on Optical Domain Compensation[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1706004 Copy Citation Text show less
    References

    [1] Yao J L, Sun Y Z, Ren H P. Chaotic optical fiber communication system: a survey and prospect[J]. Journal of Xi’an University of Technology, 34, 127-133, 124(2018).

    [2] Zheng L, Li X L, Wang Y J. Research progress on chaotic communication of semiconductor lasers[J]. Optical Communication Technology, 44, 1-5(2020).

    [3] Chen X, Tanizawa K, Winzer P et al. Experimental demonstration of a 4, 294, 967, 296-QAM-based Y-00 quantum stream cipher template carrying 160-Gb/s 16-QAM signals[J]. Optics Express, 29, 5658-5664(2021).

    [4] Futami F, Guan K, Gripp J et al. Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system[J]. Optics Express, 25, 33338-33349(2017).

    [5] Chen Y K, Pu T, Zheng J L et al. Simulation verification of phase-shift keying quantum-noise randomized cipher system[J]. Acta Optica Sinica, 40, 1606001(2020).

    [6] Ren S Y, Wang Y, Su X L. Hybrid quantum key distribution network[J]. Science China Information Sciences, 65, 200502(2022).

    [7] Kanakidis D, Bogris A, Argyris A et al. Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes[J]. Journal of Lightwave Technology, 22, 2256-2263(2004).

    [8] Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 64, 821-824(1990).

    [9] Hu J J, Jia K H, Ma J S. Chaos synchronization and encoding in coupled semiconductor lasers of multiple modulated time delays[J]. Optik, 122, 2071-2074(2011).

    [10] Argyris A, Hamacher M, Chlouverakis K E et al. Photonic integrated device for chaos applications in communications[J]. Physical Review Letters, 100, 194101(2008).

    [11] Zhang J Z, Wang A B, Wang J F et al. Wavelength division multiplexing of chaotic secure and fiber-optic communications[J]. Optics Express, 17, 6357-6367(2009).

    [12] Kudryashov N A, Lavrova S F. Dynamical properties of the periodically perturbed Triki-Biswas equation[J]. Optik, 253, 168553(2022).

    [13] Chen Q, Fan Y Y, Cheng M F et al. Secure spread spectrum communication using super-orthogonal optical chaos signals[J]. IEEE Photonics Journal, 14, 3035506(2022).

    [14] Argyris A, Syvridis D, Larger L et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 438, 343-346(2005).

    [15] Zhou Y X, Bi M H, Teng X Y et al. Physical layer encryption and system performance enhancement algorithm based on chaos mapping in OFDM-PON[J]. Acta Optica Sinica, 41, 1606002(2021).

    [16] Zhang Y T, Jia Z W, Li Q T et al. Broadband chaos signal generation based on dual-mode DFB laser with optical feedback[J]. Acta Optica Sinica, 41, 2114001(2021).

    [17] Ke J X, Yi L L, Xia G Q et al. Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate[J]. Optics Letters, 43, 1323-1326(2018).

    [18] Jiang L, Feng J C, Yan L S et al. Chaotic optical communications at 56 Gbit/s over 100-km fiber transmission based on a chaos generation model driven by long short-term memory networks[J]. Optics Letters, 47, 2382-2385(2022).

    [19] Bünner M J, Popp M, Meyer T et al. Tool to recover scalar time-delay systems from experimental time series[J]. Physical Review E, 54, R3082-R3085(1996).

    [20] Fowler A C, Kember G. Delay recognition in chaotic time series[J]. Physics Letters A, 175, 402-408(1993).

    [21] Bünner M J, Meyer T, Kittel A et al. Recovery of the time-evolution equation of time-delay systems from time series[J]. Physical Review E, 56, 5083-5089(1997).

    [22] Hegger R, Bünner M J, Kantz H et al. Identifying and modeling delay feedback systems[J]. Physical Review Letters, 81, 558-561(1998).

    [23] Ortín S, Gutiérrez J M, Pesquera L et al. Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction[J]. Physica A: Statistical Mechanics and Its Applications, 351, 133-141(2005).

    [24] Rontani D, Locquet A, Sciamanna M et al. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view[J]. IEEE Journal of Quantum Electronics, 45, 879-891(2009).

    [25] Wu J G, Xia G Q, Wu Z M. Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback[J]. Optics Express, 17, 20124-20133(2009).

    [26] Nguimdo R M, Colet P, Larger L et al. Digital key for chaos communication performing time delay concealment[J]. Physical Review Letters, 107, 034103(2011).

    [27] Nguimdo R M, Colet P. Electro-optic phase chaos systems with an internal variable and a digital key[J]. Optics Express, 20, 25333-25344(2012).

    [28] Gao X, Cheng M, Deng L et al. A novel chaotic system with suppressed time-delay signature based on multiple electro-optic nonlinear loops[J]. Nonlinear Dynamics, 82, 611-617(2015).

    [29] Zhu X H, Cheng M F, Deng L et al. An optically coupled electro-optic chaos system with suppressed time-delay signature[J]. IEEE Photonics Journal, 9, 6601009(2017).

    [30] Guo Y Q, Fang X, Zhang H J et al. Chaotic time-delay signature suppression using quantum noise[J]. Optics Letters, 46, 4888-4891(2021).

    [31] Ji Y L, Guo X M, Li P et al. Suppression of time-delay signature and enhancement of stochastic statistical properties of chaotic laser by filtering[J]. Chinese Journal of Lasers, 45, 1008001(2018).

    [32] Xie Y Y, Li J C, He C et al. Long-distance multi-channel bidirectional chaos communication based on synchronized VCSELs subject to chaotic signal injection[J]. Optics Communications, 377, 1-9(2016).

    [33] Li Q, Deng T, Wu Z M et al. Security-enhanced bidirectional long-distance chaos secure communication[J]. Chinese Journal of Lasers, 45, 0106001(2018).

    [34] Meng J Y, Zhang H B, Zhang M et al. Fiber nonlinear impairments compensation based on IPCA-DNN algorithm[J]. Acta Optica Sinica, 41, 2406002(2021).

    [35] Goeger G. Modulation format with enhanced SPM-robustness for electronically pre-distorted transmission[C](2006).

    [36] Xu C, Liu X. Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission[J]. Optics Letters, 27, 1619-1621(2002).

    [37] Rafique D, Zhao J, Ellis A D. Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission[J]. Optics Express, 19, 5219-5224(2011).

    [38] Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties[J]. IEEE Journal of Quantum Electronics, 16, 347-355(1980).

    [39] Agrawal G P[M]. Nonlinear fiber optics, 44(2013).

    Yukun Zhang, Zhaoyun Li, Zhiyong Tao, Yaxian Fan. Long-Range Optical Chaos Synchronization Based on Optical Domain Compensation[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1706004
    Download Citation