• Journal of Infrared and Millimeter Waves
  • Vol. 44, Issue 2, 170 (2025)
Zhi-Cheng LIU1,2, Jing-Tao ZHOU1, Jin MENG3, Hao-Miao WEI4..., Cheng-Yue YANG1, Yong-Bo SU1, Zhi JIN1,* and Rui JIA1,**|Show fewer author(s)
Author Affiliations
  • 1Institute of Microelectronics of Chinese Academy of Sciences,Beijing 100029,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Key Laboratory of Microwave Remote Sensing,National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China
  • 4School of Electronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2025.02.005 Cite this Article
    Zhi-Cheng LIU, Jing-Tao ZHOU, Jin MENG, Hao-Miao WEI, Cheng-Yue YANG, Yong-Bo SU, Zhi JIN, Rui JIA. A high output power 340 GHz balanced frequency doubler designed based on linear optimization method[J]. Journal of Infrared and Millimeter Waves, 2025, 44(2): 170 Copy Citation Text show less
    References

    [1] G Chattopadhyay. Technology, capabilities, and performance of low power Terahertz sources. IEEE Transactions on Terahertz Science and Technology, 1, 33-53(2011).

    [2] T Kleine-Ostmann, T Nagatsuma. A review on Terahertz communications research. Journal of Infrared, Millimeter, and Terahertz Waves, 32, 143-171(2011).

    [3] I Mehdi, J V Siles, C Lee et al. THz diode technology: Status, prospects, and applications. Proceedings of the IEEE, 105, 990-1007(2017).

    [4] P H Siegel. THz for space: The golden age, 816-819(2010).

    [5] M Tonouchi. Cutting-edge terahertz technology. Nature Photon, 1, 97-105(2007).

    [6] B S Williams, S Kumar, H Callebaut et al. Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement. Appl. Phys. Lett., 83, 2124-2126(2003).

    [7] B S Williams, H Callebaut, S Kumar et al. 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation. Appl. Phys. Lett., 82, 1015-1017(2003).

    [8] T Matsui. A brief review on metamaterial-based vacuum electronics for Terahertz and microwave science and technology. Journal of Infrared, Millimeter, and Terahertz Waves, 38, 1140-1161(2017).

    [9] A Dobroiu, M Yamashita, Y N Ohshima et al. Terahertz imaging system based on a backward-wave oscillator. Appl. Opt., 43, 5637-5646(2004).

    [10] N Kumar, U Singh, A Bera et al. A review on the sub-THz/THz gyrotrons. Infrared Physics & Technology, 76, 38-51(2016).

    [11] G Caryotakis. The klystron: A microwave source of surprising range and endurance. Physics of Plasmas, 5, 1590-1598(1998).

    [12] T W Crowe, W L Bishop, D W Porterfield et al. Opening the terahertz window with integrated diode circuits. IEEE Journal of Solid-State Circuits, 40, 2104-2110(2005).

    [13] LA Samoska. An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime. IEEE Transactions on Terahertz Science and Technology, 1, 9-24(2011).

    [14] G Chattopadhyay, E Schlecht, J Gill et al. A broadband 800 GHz Schottky balanced doubler. IEEE Microwave and Wireless Components Letters, 12, 117-118(2002).

    [15] G Chattopadhyay, E Schlecht, J S Ward et al. An all-solid-state broad-band frequency multiplier chain at 1 500 GHz. IEEE Trans Microwave Theory Techn, 52, 1538-1547(2004).

    [16] J Ding, A Maestrini, L Gatilova et al. High efficiency and wideband 300 GHz frequency doubler based on six Schottky diodes. J. Infrared Milli. Terahz Waves, 38, 1331-1341(2017).

    [17] N R Erickson, B J Rizzi, T W Crowe. A high power doubler for 174 GHz using a planar diode array, 287-296(1993).

    [18] H Liu, J Powell, C Viegas et al. A 332GHz frequency doubler using flip-chip mounted planar schottky diodes, 2, 1-3(2015).

    [19] A Maestrini, J S Ward, J J Gill et al. A 540-640-GHz high-efficiency four-anode frequency tripler. IEEE Transactions on Microwave Theory and Techniques, 53, 2835-2843(2005).

    [20] A Maestrini, C Tripon-Canseliet, J S Ward et al. A high efficiency multiple-anode 260-340 GHz frequency tripler(2006).

    [21] A Maestrini, C Tripon-Canseliet, I Mehdi. Design of a wideband 6-anode frequency tripler at 300 GHz with optimum balance, 203.

    [22] C Guo, X Wen, Z Wu et al. A 135–150 GHz high-power frequency tripler with filtering matching network. IEEE Microwave and Wireless Components Letters, 32, 1327-1330(2022).

    [23] C Guo, X Shang, M J Lancaster et al. A 135–150-GHz frequency tripler with waveguide filter matching. IEEE Transactions on Microwave Theory and Techniques, 66, 4608-4616(2018).

    [24] A Maestrini, I Mehdi, J V Siles et al. Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz. IEEE Transactions on Terahertz Science and Technology, 2, 177-185(2012).

    [25] JV Siles, K Cooper, C Lee et al. A compact room-temperature 510–560 GHz frequency tripler with 30-mW output power, 1353-1356(2018).

    [26] J V Siles, A Maestrini, B Alderman et al. A single-waveguide in-phase power-combined frequency doubler at 190 GHz. IEEE Microwave and Wireless Components Letters, 21, 332-334(2011).

    [27] A Maestrini, J S Ward, C Tripon-Canseliet et al. In-phase power-combined frequency triplers at 300 GHz. IEEE Microwave and Wireless Components Letters, 18, 218-220(2008).

    [28] C Viegas, H Liu, J Powell et al. A 180-GHz Schottky diode drequency doubler with counter-rotated E -fields to provide in-phase power-combining. IEEE Microwave and Wireless Components Letters, 28, 518-520(2018).

    [29] J V Siles, C Lee, R Lin et al. A high-power 105–120 GHz broadband on-chip power-combined frequency tripler. IEEE Microwave and Wireless Components Letters, 25, 157-159(2015).

    [30] J V Siles. Design of a high-power 1.6 THz Schottky tripler Using 'On-chip' Power-Combining and Silicon Micromachining, 26-28(2011).

    [31] Y Zhang, W Zhong, T Ren et al. A 220 GHz frequency tripler based on 3D electromagnetic model of the schottky diode and the field-circuit co-simulation method. Microwave and Optical Technology Letters, 58, 1647-1651(2016).

    [32] G J Liu, J Li, H Xu et al. Design of a 220GHz subharmonic mixer based on plannar schottky diode, 418-421(2017).

    [33] J Cui, Y Zhang, X Liu et al. Design of 199 to 238 GHz broadband subharmonic mixer combining two-stage reduced matching technology with Global Design Method. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2020 33, e2581.

    [34] J Cui, Y Zhang, Y Xu et al. A 200–240 GHz sub-harmonic mixer based on half-subdivision and half-global design method. IEEE Access, 8, 33461-33470(2020).

    [35] X Liu. A 220 GHz high-efficiency doubler based on function-based harmonic impedance optimization method. Journal of Infrared, Millimeter, and Terahertz Waves, 43, 225-243(2022).

    [36] H Wei, Y Zhang, C Wu et al. Full waveguide matching design for 220 GHz frequency doubler. J. Infrared Milli. Terahz. Waves, 43, 983-994(2022).

    [37] T Ren, Y Zhang, S Liu et al. A study of the parasitic properties of the Schottky barrier diode. J Infrared Milli Terahz Waves, 38, 143-154(2017).

    [38] F Yang. Discrete schottky diodes based terahertz frequency doubler for planetary science and remote sensing. Microwave and Optical Technology Letters, 59, 966-970(2017).

    [39] C Wu, Y Zhang, J Cui et al. A 135-190 GHz broadband self-biased frequency doubler using four-anode Schottky diodes. Micromachines, 10, 277(2019).

    Zhi-Cheng LIU, Jing-Tao ZHOU, Jin MENG, Hao-Miao WEI, Cheng-Yue YANG, Yong-Bo SU, Zhi JIN, Rui JIA. A high output power 340 GHz balanced frequency doubler designed based on linear optimization method[J]. Journal of Infrared and Millimeter Waves, 2025, 44(2): 170
    Download Citation