[1] J. L. Wilkinson, A. Boxall, D. W. Kolpin et al. Pharmaceuti-cal pollution of the world’s rivers. Proc. Natl. Acad. Sci. U. S. A., 119, e2113947119(2022).
[2] W. H. Xu, G. Zhang, S. C. Zou et al. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environ. Pollut., 145, 672(2007).
[3] P. Grobelny, G. Viola, D. Vedaldi et al. Photostability of pitavastatin-A novel HMG-CoA reductase inhibitor. J. Pharmaceut. Biomed., 50, 597(2009).
[4] J. Mielcarek, M. Kula, R. Zych et al. Kinetic studies on fluvastatin photodegradation in solutions. React. Kinet. Catal. Lett., 86, 119(2005).
[5] J. M. Brausch, G. M. Rand. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere, 82, 1518(2011).
[6] S. Zuo, H. Meng, J. Liang et al. Residues of cardiovascular and lipid-lowering drugs pose a risk to the aquatic ecosystem despite a high wastewater treatment ratio in the megacity Shanghai, China. Environ. Sci. Technol., 56, 2312(2022).
[7] R. P. Schwarzenbach, B. I. Escher, K. Fenner et al. The challenge of micropollutants in aquatic systems. Science, 313, 1072(2006).
[8] X. S. Miao, C. D. Metcalfe. Determination of cholesterol-lowering statin drugs in aqueous samples using liquid chromatog-raphy–electrospray ionization tandem mass spectrometry. J. Chromatogr. A, 998, 133(2003).
[9] R. Loos, R. Carvalho, D. C. António et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res., 47, 6475(2013).
[10] F. Pomati, S. Castiglioni, E. Zuccato et al. Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environ. Sci. Technol., 40, 2442(2006).
[11] E. B. Dussault, V. K. Balakrishnan, E. Sverko et al. Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. Environ. Sci. Technol., 27, 425(2008).
[12] X. Ning, A. Z. Hao, R. Q. Chen et al. Constructing of GQDs/ZnO S-scheme heterojunction as efficient piezocatalyst for environmental remediation and understanding the charge transfer mechanism. Carbon, 218, 118772(2024).
[13] T. T. Liu, L. Wang, C. X. Sun et al. A comparison of the photolytic and photocatalytic degradation of fluvastatin. Chem. Eng. J., 358, 1296(2019).
[14] J. Segalin, C. Sirtori, L. Jank et al. Identification of transformation products of rosuvastatin in water during ZnO photocatalytic degradation through the use of associated LC–QTOF–MS to computational chemistry. J. Hazard. Mater., 299, 78(2015).
[15] G. K. Dinesh, S. Chakma. Degradation kinetic study of cholesterol lowering statin drug using sono-hybrid techniques initiated by metal-free polymeric catalyst. J. Taiwan Inst. Chem. E, 100, 95(2019).
[16] T. T. Liu, L. Wang, X. Lu et al. Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: Adsorption, active species, and pathways. RSC Adv., 7, 12292(2017).
[17] T. Liu, F. Yang, L. Wang et al. Synergistic effect of charge separation and multiple reactive oxygen species generation on boosting photocatalytic degradation of fluvastatin by ZnIn2S4/Bi2WO6 Z-scheme heterostructured photocatalyst. Toxics, 10, 555(2022).
[18] T. T. Liu, L. Wang, X. Liu et al. Dynamic photocatalytic membrane coated with ZnIn2S4 for enhanced photocatalytic performance and antifouling property. Chem. Eng. J., 379, 122379(2020).
[19] X. Y. Xu, J. Zhang, X. D. Zhao et al. Visible-light-triggered release of sulfonamides in MOF/Ag-based nanoparticle composites: Performance, mechanism, and DFT calculations. ACS Appl. Nano Mater., 2, 418(2019).
[20] X. Y. Xu, C. Chu, H. F. Fu et al. Light-responsive UiO-66-NH2/Ag3PO4 MOF-nanoparticle composites for the capture and release of sulfamethoxazole. Chem. Eng. J., 350, 436(2018).
[21] W. Yang, Y. Chen, S. Gao et al. Post-illumination activity of Bi2WO6 in the dark from the photocatalytic “memory” effect. J. Adv. Ceram., 10, 355(2021).
[22] Z. Wu, Z. Q. Zhu, J. P. Ma et al. High piezo-photocatalysis of BaTiO3 nanofibers for organic dye decomposition. Surf. Interfaces, 48, 104308(2024).
[23] N. R. Budha, A. Frymoyer, G. S. Smelick et al. Drug absorption interactions between oral targeted anticancer agents and PPIs: Is pH-dependent solubility the Achilles heel of targeted therapy. Clin. Pharmacol. Ther., 92, 203(2012).
[24] N. S. Corin, P. H. Backlund, M. Kulovaara. Photolysis of the resin acid dehydroabietic acid in water. Environ. Sci. Technol., 34, 2231(2000).
[25] J. R. Garbin, D. Milori, M. L. Simoes et al. Influence of humic substances on the photolysis of aqueous pesticide residues. Chemosphere, 66, 1692(2007).
[26] C. Lin, K. S. Lin. Photocatalytic oxidation of toxic organohalides with TiO2/UV: The effects of humic substances and organic mixtures. Chemosphere, 66, 1872(2007).
[27] T. D. Li, W. Hu, C. Tang et al. Enhanced piezo-catalysis in ZnO rods with built-in nanopores. J. Adv. Ceram., 12, 2271(2023).
[28] B. Razavi, W. H. Song, H. Santoke et al. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms. Radiat. Phys. Chem., 80, 453(2011).