• Chinese Optics Letters
  • Vol. 23, Issue 2, 023606 (2025)
Zhiqiang Wu1, Jingxiang Gao1, Qingxiu Yang1, Jiahao Chi1..., Guifang Wang2,*, Songlin Zhuang1 and Qingqing Cheng1,2,3,**|Show fewer author(s)
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Department of Respiratory Diseases and Critical Medicine, Quzhou Hospital Affiliated with Wenzhou Medical University, Quzhou 324000, China
  • 3State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China
  • show less
    DOI: 10.3788/COL202523.023606 Cite this Article Set citation alerts
    Zhiqiang Wu, Jingxiang Gao, Qingxiu Yang, Jiahao Chi, Guifang Wang, Songlin Zhuang, Qingqing Cheng, "Exploring coupling flip mechanisms via plasmon-induced transparency in active metamaterials," Chin. Opt. Lett. 23, 023606 (2025) Copy Citation Text show less
    References

    [1] S. E. Harris. Electromagnetically induced transparency. Phys. Today, 50, 36(1997).

    [2] H. Xia, S. Sharpe, A. Merriam et al. Electromagnetically induced transparency in atoms with hyperfine structure. Phys. Rev. A, 56, R3362(1997).

    [3] N. Verellen, Y. Sonnefraud, H. Sobhani et al. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett., 9, 1663(2009).

    [4] Y. Francescato, V. Giannini, S. A. Maier. Plasmonic systems unveiled by Fano resonances. ACS Nano, 6, 1830(2012).

    [5] R. Singh, I. A. Al-Naib, M. Koch et al. Sharp Fano resonances in THz metamaterials. Opt. Express, 19, 6312(2011).

    [6] Q. Xu, S. Sandhu, M. L. Povinelli et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett., 96, 123901(2006).

    [7] Z.-G. Dong, H. Liu, M.-X. Xu et al. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency. Opt. Express, 18, 22412(2010).

    [8] C. G. Alzar, M. Martinez, P. Nussenzveig. Classical analog of electromagnetically induced transparency. Am. J. Phys., 70, 37(2002).

    [9] J. Gu, R. Singh, X. Liu et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [10] N. Papasimakis, V. A. Fedotov, N. Zheludev et al. Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett., 101, 253903(2008).

    [11] P. Tassin, L. Zhang, T. Koschny et al. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett., 102, 053901(2009).

    [12] X. Liu, J. Gu, R. Singh et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl. Phys. Lett., 100, 131101(2012).

    [13] X. Yang, M. Yu, D.-L. Kwong et al. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys. Rev. Lett., 102, 173902(2009).

    [14] N. Liu, L. Langguth, T. Weiss et al. Plasmonic analogue of electromagnetically induced transparency at the drude damping limit. Nat. Mater., 8, 758(2009).

    [15] T. Li, J.-Q. Li, F.-M. Wang et al. Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures. Appl. Phys. Lett., 90, 251112(2007).

    [16] D. Liu, Q. Fan, M. Mei et al. Tunable multiple plasmon-induced transparency with side-coupled rectangle cavities. Chin. Opt. Lett., 14, 052302(2016).

    [17] L. Zhang, P. Tassin, T. Koschny et al. Large group delay in a microwave metamaterial analog of electromagnetically induced transparency. Appl. Phys. Lett., 97, 241904(2010).

    [18] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [19] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 312, 1780(2006).

    [20] C. M. Soukoulis, M. Wegener. Optical metamaterials—more bulky and less lossy. Science, 330, 1633(2010).

    [21] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917(2012).

    [22] T. F. Krauss. Why do we need slow light?. Nat. Photon., 2, 448(2008).

    [23] J. Lou, Y. Jiao, R. Yang et al. Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Proc. Natl. Acad. Sci. USA, 119, e2209218119(2022).

    [24] J. Zhang, N. Mu, L. Liu et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens. Bioelectron., 185, 113241(2021).

    [25] M. Yang, L. Liang, Z. Zhang et al. Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells. Opt. Express, 27, 19520(2019).

    [26] X. Yan, M. Yang, Z. Zhang et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron., 126, 485(2019).

    [27] Z. Ma, Y. Jiao, C. Zhang et al. Identification and quantitative detection of two pathogenic bacteria based on a terahertz metasensor. Nanoscale, 15, 515(2023).

    [28] R. Wang, L. Xu, L. Huang et al. Ultrasensitive terahertz biodetection enabled by quasi-bic-based metasensors. Small, 19, 2301165(2023).

    [29] Y. Jiao, J. Lou, Z. Ma et al. Photoactive terahertz metasurfaces for ultrafast switchable sensing of colorectal cells. Mater. Horiz., 9, 2984(2022).

    [30] N. Liu, M. Hentschel, T. Weiss et al. Three-dimensional plasmon rulers. Science, 332, 1407(2011).

    [31] R. Taubert, M. Hentschel, J. Kastel et al. Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett., 12, 1367(2012).

    [32] C.-Y. Chen, I.-W. Un, N.-H. Tai et al. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Opt. Express, 17, 15372(2009).

    [33] Z.-G. Dong, H. Liu, J.-X. Cao et al. Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl. Phys. Lett., 97, 114101(2010).

    [34] F. Bonaccorso, Z. Sun, T. Hasan et al. Graphene photonics and optoelectronics. Nat. Photon., 4, 611(2010).

    [35] D. Hui, H. Alqattan, S. Zhang et al. Ultrafast optical switching and data encoding on synthesized light fields. Sci. Adv., 9, eadf1015(2023).

    [36] C. Wu, A. B. Khanikaev, G. Shvets. Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys. Rev. Lett., 106, 107403(2011).

    [37] T.-T. Kim, H.-D. Kim, R. Zhao et al. Electrically tunable slow light using graphene metamaterials. ACS Photon., 5, 1800(2018).

    [38] J. Wang, B. Yuan, C. Fan et al. A novel planar metamaterial design for electromagnetically induced transparency and slow light. Opt. Express, 21, 25159(2013).

    [39] L. Zhu, F.-Y. Meng, J.-H. Fu et al. Multi-band slow light metamaterial. Opt. Express, 20, 4494(2012).

    [40] M. Tanaka, T. Amemiya, H. Kagami et al. Control of slow-light effect in a metamaterial-loaded Si waveguide. Opt. Express, 28, 23198(2020).

    [41] A. Reza, M. Dignam, S. Hughes. Can light be stopped in realistic metamaterials?. Nature, 455, E10(2008).

    [42] C. Kurter, P. Tassin, L. Zhang et al. Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys. Rev. Lett., 107, 043901(2011).

    [43] W. Cao, R. Singh, C. Zhang et al. Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators. Appl. Phys. Lett., 103, 101106(2013).

    [44] S. Zhang, D. A. Genov, Y. Wang et al. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [45] D. Shrekenhamer, W.-C. Chen, W. J. Padilla. Liquid crystal tunable metamaterial absorber. Phys. Rev. Lett., 110, 177403(2013).

    [46] S. Savo, D. Shrekenhamer, W. J. Padilla. Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv. Opt. Mater., 2, 275(2014).

    [47] M. Kafesaki, N. Shen, S. Tzortzakis et al. Optically switchable and tunable terahertz metamaterials through photoconductivity. J. Opt., 14, 114008(2012).

    [48] Y. Wang, L.-Y. Zhang, J.-S. Mei et al. Spoof surface plasmons resonance effect and tunable electric response of improved metamaterial in the terahertz regime. Chin. Phys. B, 24, 127302(2015).

    [49] J. Zhang, G. Wang, B. Zhang et al. Photo-excited broadband tunable terahertz metamaterial absorber. Opt. Mater., 54, 32(2016).

    [50] H.-T. Chen, W. J. Padilla, J. M. Zide et al. Active terahertz metamaterial devices. Nature, 444, 597(2006).

    [51] L. Ju, B. Geng, J. Horng et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 6, 630(2011).

    [52] S. Xiao, T. Wang, T. Liu et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 126, 271(2018).

    [53] S. H. Lee, M. Choi, T.-T. Kim et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater., 11, 936(2012).

    [54] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photon., 11, 465(2017).

    [55] S. Surnev, M. Ramsey, F. Netzer. Vanadium oxide surface studies. Prog. Surf. Sci., 73, 117(2003).

    [56] P. Tassin, L. Zhang, R. Zhao et al. Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation. Phys. Rev. Lett., 109, 187401(2012).

    [57] H. Lu, X. Liu, G. Wang et al. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology, 23, 444003(2012).

    [58] H. Sun, Y. Hu, Y. Tang et al. Ultrafast polarization-dependent all-optical switching of germanium-based metaphotonic devices. Photonics Res., 8, 263(2020).

    [59] Y. Guo, Y. Huang, X. Li et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface. Adv. Opt. Mater., 7, 1900503(2019).

    [60] Y. Hu, T. Jiang, H. Sun et al. Ultrafast frequency shift of electromagnetically induced transparency in terahertz metaphotonic devices. Laser Photonics Rev., 14, 1900338(2020).

    [61] Y. Zhao, Q. Huang, H. Cai et al. Ultrafast control of slow light in THz electromagnetically induced transparency metasurfaces. Chin. Opt. Lett., 19, 073602(2021).

    [62] Z. Ye, S. Zhang, Y. Wang et al. Mapping the near-field dynamics in plasmon-induced transparency. Phys. Rev. B, 86, 155148(2012).

    Zhiqiang Wu, Jingxiang Gao, Qingxiu Yang, Jiahao Chi, Guifang Wang, Songlin Zhuang, Qingqing Cheng, "Exploring coupling flip mechanisms via plasmon-induced transparency in active metamaterials," Chin. Opt. Lett. 23, 023606 (2025)
    Download Citation