• Journal of Inorganic Materials
  • Vol. 39, Issue 9, 1005 (2024)
Kunpeng WANG1, Zhaolin LIU2, Cunsheng LIN2, and Zhiyu WANG1,2,*
Author Affiliations
  • 11. State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
  • 22. Branch of New Material Development, Valiant Co., Ltd., Yantai 265503, China
  • show less
    DOI: 10.15541/jim20240063 Cite this Article
    Kunpeng WANG, Zhaolin LIU, Cunsheng LIN, Zhiyu WANG. Development of Quasi-solid-state Na-ion Battery Based on Water-minimal Prussian Blue Cathode[J]. Journal of Inorganic Materials, 2024, 39(9): 1005 Copy Citation Text show less
    References

    [1] W L WANG, Y GANG, J PENG et al. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries. Adv. Funct. Mater., 2111727(2022).

    [2] X Y MENG, Y Z LIU, Z Y WANG et al. A quasi-solid-state rechargeable cell with high energy and superior safety enabled by stable redox chemistry of Li2S in gel electrolyte. Energy Environ. Sci., 2278(2021).

    [3] H Y CHE, S L CHEN, Y Y XIE et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci., 1075(2017).

    [4] W K LI, N ZHAO, Z J BI et al. Na3Zr2Si2PO12 ceramic electrolytes for Na-ion battery: preparation using spray-drying method and its property. J. Inorg. Mater., 189(2022).

    [5] D LI, C LEI, H LAI et al. Recent advancements in interface between cathode and garnet solid electrolyte for all solid state Li-ion batteries. J. Inorg. Mater., 694(2019).

    [6] K J KIM, M BALAISH, M WADAGUCHI et al. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater., 2002689(2021).

    [7] H GAO, B GUO, J SONG et al. A composite gel-polymer/glass- fiber electrolyte for sodium-ion batteries. Adv. Energy Mater., 1402235(2015).

    [8] Y Z LIU, X Y MENG, Y SHI et al. Long-life quasi-solid-state anode-free batteries enabled by Li compensation coupled interface engineering. Adv. Mater., e2305386(2023).

    [9] G Y DU, M L TAO, J LI et al. Low-operating temperature, high- rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode. Adv. Energy Mater., 1903351(2020).

    [10] J PENG, W ZHANG, Q N LIU et al. Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater., 2108384(2022).

    [11] Y H LU, L WANG, J G CHENG et al. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun., 6544(2012).

    [12] C SÅNGELAND, R MOGENSEN, D BRANDELL et al. Stable cycling of sodium metal all-solid-state batteries with polycarbonate- based polymer electrolytes. ACS Appl. Poly. Mater., 825(2019).

    [13] T KIM, S H AHN, Y Y SONG et al. Prussian blue-type sodium-ion conducting solid electrolytes for all solid-state batteries. Angew. Chem. Int. Ed., e202309852(2023).

    [14] J SONG, L WANG, Y H LU et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc., 2658(2015).

    [15] Y LIU, S FAN, Y GAO et al. Isostructural synthesis of iron-based Prussian blue analogs for sodium-ion batteries. Small, e2302687(2023).

    [16] W WANG, Y GANG, Z HU et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat. Commun., 980(2020).

    [17] Y YOU, X Q YU, Y X YIN et al. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res., 117(2014).

    [18] W H REN, M S QIN, Z X ZHU et al. Activation of sodium storage sites in Prussian blue analogues via surface etching. Nano Lett., 4713(2017).

    [19] H ZHANG, Y GAO, J PENG et al. Prussian blue analogues with optimized crystal plane orientation and low crystal defects toward 450 Wh·kg-1 alkali-ion batteries. Angew. Chem. Int. Ed., e202303953(2023).

    [20] Z H ZHANG, M AVDEEV, H C CHEN et al. Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries. Nat. Commun., 7790(2022).

    [21] M JIANG, Z HOU, H MA et al. Resolving deactivation of low-spin Fe sites by redistributing electron density toward high- energy sodium storage. Nano Lett., 10423(2023).

    [22] Z TANG, R ZHANG, H Y WANG et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat. Commun., 6024(2023).

    [23] Y B NIU, Y J GUO, Y X YIN et al. High-efficiency cathode sodium compensation for sodium-ion batteries. Adv. Mater., e2001419(2020).

    Kunpeng WANG, Zhaolin LIU, Cunsheng LIN, Zhiyu WANG. Development of Quasi-solid-state Na-ion Battery Based on Water-minimal Prussian Blue Cathode[J]. Journal of Inorganic Materials, 2024, 39(9): 1005
    Download Citation