• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1210002 (2023)
Xinyue Cai1, Yang Zhou1,2,3,*, Xiaofei Hu1,2, Lü Liang1,2,3..., Luying Zhao1,4 and Yangzhao Peng1|Show fewer author(s)
Author Affiliations
  • 1Institute of Geospatial Information, Information Engineer University, Zhengzhou 450001, Henan, China
  • 2Collaborative Innovation Center of Geo-Information Technology for Smart Central Plains, Henan Province, Zhengzhou 450001, Henan, China
  • 3Key Laboratory of Spatiotemporal Perception and Intelligent Processing, Ministry of Natural Resources, Zhengzhou 450001, Henan, China
  • 4Henan Technical College of Construction, Zhengzhou 450001, Henan, China
  • show less
    DOI: 10.3788/LOP220882 Cite this Article Set citation alerts
    Xinyue Cai, Yang Zhou, Xiaofei Hu, Lü Liang, Luying Zhao, Yangzhao Peng. Intelligent Detection Algorithm for Small Targets Based on Super-Resolution Reconstruction[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210002 Copy Citation Text show less
    References

    [1] Zhang D F, Liu Y H, Zhang R F. Intelligent assistant driving system based on deep leaning[J]. Electronic Science and Technology, 31, 60-63(2018).

    [2] Duan Z J, Li S B, Hu J J et al. Review of deep learning based object detection methods and their mainstream frameworks[J]. Laser & Optoelectronics Progress, 57, 120005(2020).

    [3] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [4] Dai J F, Li Y, He K M et al. R-FCN: object detection via region-based fully convolutional networks[C], 379-387(2016).

    [5] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).

    [6] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).

    [7] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C], 6517-6525(2017).

    [8] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767v1

    [9] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934

    [10] Liu Y, Zhan Y W. Survey of small object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 57, 37-48(2021).

    [11] Li Z X, Zhou F Q. FSSD: feature fusion single shot multibox detector[EB/OL]. https://arxiv.org/abs/1712.00960

    [12] Kisantal M, Wojna Z, Murawski J et al. Augmentation for small object detection[EB/OL]. https://arxiv.org/abs/1902.07296

    [13] Tian Z, Shen C H, Chen H et al. FCOS: fully convolutional one-stage object detection[C], 9626-9635(2019).

    [14] Deng C F, Wang M M, Liu L et al. Extended feature pyramid network for small object detection[J]. IEEE Transactions on Multimedia, 24, 1968-1979(2022).

    [15] Yang Q L, Zhou B H, Zheng W et al. Dim and small target detection based on fully convolutional recursive network[J]. Acta Optica Sinica, 40, 1310002(2020).

    [16] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).

    [17] Liu Y, Li H Y, Wang X G. Rethinking feature discrimination and polymerization for large-scale recognition[EB/OL]. https://arxiv.org/abs/1710.00870

    [18] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 105-114(2017).

    Xinyue Cai, Yang Zhou, Xiaofei Hu, Lü Liang, Luying Zhao, Yangzhao Peng. Intelligent Detection Algorithm for Small Targets Based on Super-Resolution Reconstruction[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210002
    Download Citation