[1] Zhang D F, Liu Y H, Zhang R F. Intelligent assistant driving system based on deep leaning[J]. Electronic Science and Technology, 31, 60-63(2018).
[2] Duan Z J, Li S B, Hu J J et al. Review of deep learning based object detection methods and their mainstream frameworks[J]. Laser & Optoelectronics Progress, 57, 120005(2020).
[3] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[4] Dai J F, Li Y, He K M et al. R-FCN: object detection via region-based fully convolutional networks[C], 379-387(2016).
[5] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).
[6] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).
[7] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C], 6517-6525(2017).
[10] Liu Y, Zhan Y W. Survey of small object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 57, 37-48(2021).
[13] Tian Z, Shen C H, Chen H et al. FCOS: fully convolutional one-stage object detection[C], 9626-9635(2019).
[14] Deng C F, Wang M M, Liu L et al. Extended feature pyramid network for small object detection[J]. IEEE Transactions on Multimedia, 24, 1968-1979(2022).
[15] Yang Q L, Zhou B H, Zheng W et al. Dim and small target detection based on fully convolutional recursive network[J]. Acta Optica Sinica, 40, 1310002(2020).
[16] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).
[18] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 105-114(2017).