• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 2, 22005 (2023)
, , and *
Author Affiliations
  • State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, Hubei, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/acc6a7 Cite this Article
    [in Chinese], [in Chinese], [in Chinese]. Atomic-scale engineering of advanced catalytic and energy materials via atomic layer deposition for eco-friendly vehicles[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 22005 Copy Citation Text show less
    References

    [1] Datye A K and Votsmeier M 2021 Opportunities and challenges in the development of advanced materials for emission control catalysts Nat. Mater. 20 1049–59

    [2] Du J Y, Ouyang M G and Chen J F 2017 Prospects for Chinese electric vehicle technologies in 2016–2020: ambition and rationality Energy 120 584–96

    [3] Wagner F T, Lakshmanan B and Mathias M F 2010 Electrochemistry and the future of the automobile J. Phys. Chem. Lett. 1 2204–19

    [4] LuoY, Wu YH,LiB,MoTD,LiY, FengSP, QuJKand Chu P K 2021 Development and application of fuel cells in the automobile industry J. Energy Storage 42 103124

    [5] Wang J Y, Wang H L and Fan Y 2018 Techno-economic challenges of fuel cell commercialization Engineering 4 352–60

    [6] Beniya A and Higashi S 2019 Towards dense single-atom catalysts for future automotive applications Nat. Catal. 2 590–602

    [7] Zubi G, Dufo-López R, Carvalho M and Pasaoglu G 2018 The lithium-ion battery: state of the art and future perspectives Renew. Sustain. Energy Rev. 89 292–308

    [8] Zeng X Q, Li M, El-Hady D A, Alshitari W, Al-Bogami A S, Lu J and Amine K 2019 Commercialization of lithium battery technologies for electric vehicles Adv. Energy Mater. 9 1900161

    [9] Debe M K 2012 Electrocatalyst approaches and challenges for automotive fuel cells Nature 486 43–51

    [10] Yoshida T and Kojima K 2015 Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society Electrochem. Soc. Interface 24 45–49

    [11] Nie L et al 2017 Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation Science 358 1419–23

    [12] Liu L C and Corma A 2018 Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles Chem. Rev. 118 4981–5079

    [13] RenXF, WangYR,LiuAM,ZhangZH,LvQY and Liu B H 2020 Current progress and performance improvement of Pt/C catalysts for fuel cells J. Mater. Chem. A 8 24284–306

    [14] Wang X X, Swihart M T and Wu G 2019 Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation Nat. Catal. 2 578–89

    [15] Lambert C K 2019 Current state of the art and future needs for automotive exhaust catalysis Nat. Catal. 2 554–7

    [16] FengXN,RenDS,HeXMandOuyangMG2020 Mitigating thermal runaway of lithium-ion batteries Joule 4 743–70

    [17] DingY, MuDB,Wu BR,WangR,ZhaoZKandWu F 2017 Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles Appl. Energy 195 586–99

    [18] Kodama K, Nagai T, Kuwaki A, Jinnouchi R and Morimoto Y 2021 Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles Nat. Nanotechnol. 16 140–7

    [19] Stamenkovic V R, Strmcnik D, Lopes P P and Markovic N M 2017 Energy and fuels from electrochemical interfaces Nat. Mater. 16 57–69

    [20] Zhang J M, Li Y C, Cao K and Chen R 2022 Advances in atomic layer deposition Nanomanuf. Metrol. 5 191–208

    [21] Suntola T and Antson J 1977 Method for producing compound thin films U. S. Patent. No. 4,058,430

    [22] George S M 2010 Atomic layer deposition: an overview Chem. Rev. 110 111–31

    [23] Johnson R W, Hultqvist A and Bent S F 2014 A brief review of atomic layer deposition: from fundamentals to applications Mater. Today 17 236–46

    [24] ChenR,LiYC,CaiJM,CaoKandLeeHBR2020 Atomic level deposition to extend Moore’s law and beyond Int. J. Extreme Manuf. 2 022002

    [25] Gray J M, Houlton J P, Gertsch J C, Brown J J, Rogers C T, George S M and Bright V M 2014 Hemispherical micro-resonators from atomic layer deposition J. Micromech. Microeng. 24 125028

    [26] Ives R L, Oldham C J, Daubert J S, Gremaud A P, Collins G, Marsden D, Bui T, Fusco M A, Mitsdarffer B and Parsons G N 2018 Corrosion mitigation coatings for RF sources and components IEEE Trans. Electron Devices 65 2385–92

    [27] Lin Y C, Chung V P J, Santhanam S, Mukherjee T and Fedder G K 2020 Sidewall metallization on CMOS MEMS by platinum ALD patterning J. Microelectromech. Syst. 29 978–83

    [28] Wooding J P, Li Y, Kalaitzidou K and Losego M D 2020 Engineering the interfacial chemistry and mechanical properties of cellulose-reinforced epoxy composites using atomic layer deposition (ALD) Cellulose 27 6275–85

    [29] Rodríguez R E, Lee T H, Chen Y X, Kazyak E, Huang C, Cho T H, LePage W S, Thouless M D, Banu M and Dasgupta N P 2021 Electrically conductive kevlar fibers and polymer-matrix composites enabled by atomic layer deposition ACS Appl. Polym. Mater. 3 5959–68

    [30] Mousa M B M, Oldham C J and Parsons G N 2015 Precise nanoscale surface modification and coating of macroscale objects: open-environment in loco atomic layer deposition on an automobile ACS Appl. Mater. Interfaces 7 19523–9

    [31] Niu W B, Zhang L L, Wang Y P and Zhang S F 2019 Multicolored one-dimensional photonic crystal coatings with excellent mechanical robustness, strong substrate adhesion, and liquid and particle impalement resistance J. Mater. Chem. C 7 3463–70

    [32] Gupta B, Hossain A, Riaz A, Sharma A, Zhang D D, Tan H H, Jagadish C, Catchpole K, Hoex B and Karuturi S 2022 Recent advances in materials design using atomic layer deposition for energy applications Adv. Funct. Mater. 32 2109105

    [33] Gandla D and Tan D Q 2019 Progress report on atomic layer deposition toward hybrid nanocomposite electrodes for next generation supercapacitors Adv. Mater. Interfaces 6 1900678

    [34] Zhao Z, Huang G S, Kong Y, Cui J Z, Solovev A A, Li X F and Mei Y F 2022 Atomic layer deposition for electrochemical energy: from design to industrialization Electrochem. Energy Rev. 5 31

    [35] Li Z D, Su J J and Wang X D 2021 Atomic layer deposition in the development of supercapacitor and lithium-ion battery devices Carbon 179 299–326

    [36] Liu H Z, Zhang G H, Zheng X, Chen F J and Duan H G 2020 Emerging miniaturized energy storage devices for microsystem applications: from design to integration Int. J. Extreme Manuf. 2 042001

    [37] LvZS,LiWL,WeiJQ,HoF, CaoJandChenXD2023 Autonomous chemistry enabling environment-adaptive electrochemical energy storage devices CCS Chem. 5 11–29

    [38] Chen R, Shan B, Liu X and Cao K 2020 Catalysts via atomic layer deposition Recent Advances in Nanoparticle Catalysis ed P W N M Van Leeuwen and C Claver (Cham: Springer) pp 69–105

    [39] Li Z S, Li J W, Liu X and Chen R 2021 Progress in enhanced fluidization process for particle coating via atomic layer deposition Chem. Eng. Process. Process Intensif. 159 108234

    [40] Longrie D, Deduytsche D and Detavernier C 2014 Reactor concepts for atomic layer deposition on agitated particles: a review J. Vac. Sci. Technol. A 32 010802

    [41] Adhikari S, Selvaraj S and Kim D H 2018 Progress in powder coating technology using atomic layer deposition Adv. Mater. Interfaces 5 1800581

    [42] Didden A P, Middelkoop J, Besling W F A, Nanu D E and van de Krol R 2014 Fluidized-bed atomic layer deposition reactor for the synthesis of core-shell nanoparticles Rev. Sci. Instrum. 85 013905

    [43] Onn T M, Küngas R, Fornasiero P, Huang K and Gorte R J 2018 Atomic layer deposition on porous materials: problems with conventional approaches to catalyst and fuel cell electrode preparation Inorganics 6 34

    [44] Weimer A W 2019 Particle atomic layer deposition J. Nanopart. Res. 21 9

    [45] Van Bui H, Grillo F and van Ommen J R 2017 Atomic and molecular layer deposition: off the beaten track Chem. Commun. 53 45–71

    [46] Hu Y Y, Lu J and Feng H 2021 Surface modification and functionalization of powder materials by atomic layer deposition: a review RSC Adv. 11 11918–42

    [47] Parsons G N, Elam J W, George S M, Haukka S, Jeon H, Kessels W M M, Leskel. M, Poodt P, Ritala M and Rossnagel S M 2013 History of atomic layer deposition and its relationship with the American Vacuum Society J. Vac. Sci. Technol. A 31 050818

    [48] O’Neill B J, Jackson D H K, Lee J, Canlas C, Stair P C, Marshall C L, Elam J W, Kuech T F, Dumesic J A and Huber G W 2015 Catalyst design with atomic layer deposition ACS Catal. 5 1804–25

    [49] Cao K, Cai J M, Liu X and Chen R 2018 Review Article: catalysts design and synthesis via selective atomic layer deposition J. Vac. Sci. Technol. A 36 010801

    [50] Jung Y S, Cavanagh A S, Gedvilas L, Widjonarko N E, ScottI D, Lee SH, Kim G H, George SM and Dillon A C 2012 Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes Adv. Energy Mater. 2 1022–7

    [51] Elam J W, Dasgupta N P and Prinz F B 2011 ALD for clean energy conversion, utilization, and storage MRS Bull. 36 899–906

    [52] LeeMJ et al 2022 Powder coatings via atomic layer deposition for batteries: a review Chem. Mater. 34 3539–87

    [53] WangCL,GuXK,Yan H,LinY, LiJJ,LiuDD,LiWX and Lu J L 2017 Water-mediated Mars-Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst ACS Catal. 7 887–91

    [54] Ye XX,WangHW, LinY, LiuXY, CaoLN,GuJand Lu J L 2019 Insight of the stability and activity of platinum single atoms on ceria Nano Res. 12 1401–9

    [55] LiuX,JiaSF, YangM,TangYT, Wen YW, ChuSQ, Wang J B, Shan B and Chen R 2020 Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation Nat. Commun. 11 4240

    [56] HoangS,LuXX,TangWX,WangSB,DuSC,NamCY, Ding Y, Vinluan III R D, Zheng J and Gao P X 2019 High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs Catal. Today 320 2–10

    [57] TangWX,LuXX,LiuFY, DuSC,WengJF, HoangS, Wang S B, Nam C Y and Gao P X 2019 Ceria-based nanoflake arrays integrated on 3D cordierite honeycombs for efficient low-temperature diesel oxidation catalyst Appl. Catal. B 245 623–34

    [58] Li J H, Liang X H, King D M, Jiang Y B and Weimer A W 2010 Highly dispersed Pt nanoparticle catalyst prepared by atomic layer deposition Appl. Catal. B 97 220–6

    [59] Enterkin J A, Setthapun W, Elam J W, Christensen S T, Rabuffetti F A, Marks L D, Stair P C, Poeppelmeier K R and Marshall C L 2011 Propane oxidation over Pt/SrTiO3 nanocuboids ACS Catal. 1 629–35

    [60] Chen B R et al 2018 Morphology and CO oxidation activity of Pd nanoparticles on SrTiO3 nanopolyhedra ACS Catal. 8 4751–60

    [61] LiuX,TangYT, ShenMQ,LiW, ChuSQ,ShanBand Chen R 2018 Bifunctional CO oxidation over Mn-mullite anchored Pt sub-nanoclusters via atomic layer deposition Chem. Sci. 9 2469–73

    [62] ZuoYQ et al 2022 Synthesis of a spatially confined, highly durable, and fully exposed Pd cluster catalyst via sequential site-selective atomic layer deposition ACS Appl. Mater. Interfaces 14 14466–73

    [63] Onn T M, Zhang S Y, Arroyo-Ramirez L, Xia Y, Wang C, Pan X Q, Graham G W and Gorte R J 2017 High-surface-area ceria prepared by ALD on Al2O3 support Appl. Catal. B 201 430–7

    [64] Mao X Y, Foucher A, Stach E A and Gorte R J 2019 A study of support effects for CH4 and CO oxidation over Pd catalysts on ALD-modified Al2O3 Catal. Lett. 149 905–15

    [65] OnnTM,DaiS,ChenJY, Pan XQ,GrahamGWand Gorte R J 2017 High-surface area ceria-zirconia films prepared by atomic layer deposition Catal. Lett. 147 1464–70

    [66] Mao X Y, Foucher A C, Montini T, Stach E A, Fornasiero P and Gorte R J 2020 Epitaxial and strong support interactions between Pt and LaFeO3 films stabilize Pt dispersion J. Am. Chem. Soc. 142 10373–82

    [67] Lin C, Foucher A C, Ji Y C, Curran C D, Stach E A, McIntosh S and Gorte R J 2019 “Intelligent” Pt catalysts studied on high-surface-area CaTiO3 films ACS Catal. 9 7318–27

    [68] Mao X Y, Foucher A C, Stach E A and Gorte R J 2019 “Intelligent” Pt catalysts based on thin LaCoO3 films prepared by atomic layer deposition Inorganics 7 113

    [69] Onn T M, Monai M, Dai S, Fonda E, Montini T, Pan X Q, Graham G W, Fornasiero P and Gorte R J 2018 Smart Pd catalyst with improved thermal stability supported on high-surface-area LaFeO3 prepared by atomic layer deposition J. Am. Chem. Soc. 140 4841–8

    [70] DuanHM,You R,XuST, LiZR,QianK,CaoT, Huang W X and Bao X H 2019 Pentacoordinated Al3+-stabilized active Pd structures on Al2O3-coated palladium catalysts for methane combustion Angew. Chem. Int. Ed. 58 12043–8

    [71] CuiWH,LiSD,WangDD,DengYZandChenYF2019 High reactivity and sintering resistance of CH4 oxidation over modified Pd/Al2O3 Catal. Commun. 119 86–90

    [72] Liang X H, Li J H, Yu M, McMurray C N, Falconer J L and Weimer A W 2011 Stabilization of supported metal nanoparticles using an ultrathin porous shell ACS Catal. 1 1162–5

    [73] Onn T M, Zhang S Y, Arroyo-Ramirez L, Chung Y C, Graham G W, Pan X Q and Gorte R J 2015 Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2 ACS Catal. 5 5696–701

    [74] Onn T M, Arroyo-Ramirez L, Monai M, Oh T S, Talati M, Fornasiero P, Gorte R J and Khader M M 2016 Modification of Pd/CeO2 catalyst by atomic layer deposition of ZrO2 Appl. Catal. B 197 280–5

    [75] LeeS,LinC,KimS,MaoXY, KimT, KimSJ,GorteRJ and Jung W 2021 Manganese oxide overlayers promote CO oxidation on Pt ACS Catal. 11 13935–46

    [76] Liu X, Zhu Q Q, Lang Y, Cao K, Chu S Q, Shan B and Chen R 2017 Oxide-nanotrap-anchored platinum nanoparticles with high activity and sintering resistance by area-selective atomic layer deposition Angew. Chem. Int. Ed. 56 1648–52

    [77] Cao K, Shi L, Gong M, Cai J M, Liu X, Chu S Q, Lang Y, Shan B and Chen R 2017 Nanofence stabilized platinum nanoparticles catalyst via facet-selective atomic layer deposition Small 13 1700648

    [78] Cai J M, Zhang J, Cao K, Gong M, Lang Y, Liu X, Chu S Q, Shan B and Chen R 2018 Selective passivation of Pt nanoparticles with enhanced sintering resistance and activity toward CO oxidation via atomic layer deposition ACS Appl. Nano Mater. 1 522–30

    [79] WangXF, JinBT, JinY, Wu TP, MaLandLiangXH2020 Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions ACS Appl. Nano Mater. 3 2867–74

    [80] HanSW, KimDH,JeongMG,ParkKJandKimYD2016 CO oxidation catalyzed by NiO supported on mesoporous Al2O3 at room temperature Chem. Eng. J. 283 992–8

    [81] Jackson D H K, Schwartz M M, Ngo C, Facteau D, Pylypenko S, Marshall C L and Dameron A A 2019 Hydrocarbon catalyzed-selective catalytic reduction catalysts using core-shell atomic layer deposited CeO2 and ZrO2 J. Vac. Sci. Technol. A 37 020919

    [82] Shen J and Hess C 2020 High surface area VOx/TiO2/ SBA-15 model catalysts for ammonia SCR prepared by atomic layer deposition Catalysts 10 1386

    [83] SunLW, LiK,ZhangZS,HuXF, TianHY, ZhangYBand Yang X G 2019 MnO2-Graphene-oxide-scroll-TiO2 composite catalyst for low-temperature NH3-SCR of NO with good steam and SO2 resistance obtained by low-temperature carbon-coating and selective atomic layer deposition Catal. Sci. Technol. 9 1602–8

    [84] Tian H Y, Ping Y, Zhang Y B, Zhang Z S, Sun L W, Liu P, Zhu J J and Yang X G 2021 Atomic layer deposition of silica to improve the high-temperature hydrothermal stability of Cu-SSZ-13 for NH3 SCR of NOx J. Hazard. Mater. 416 126194

    [85] QiXR,HanLP, DengJ,LanTW, WangFL,ShiLYand Zhang D S 2022 SO2-tolerant catalytic reduction of NOx via tailoring electron transfer between surface iron sulfate and subsurface ceria Environ. Sci. Technol. 56 5840–8

    [86] Ivanova T V, Toivonen J, Maydannik P S, K..ri.inen T, Sillanp.. M, Homola T and Cameron D C 2016 Atomic layer deposition of cerium oxide for potential use in diesel soot combustion J. Vac. Sci. Technol. A 34 031506

    [87] Ivanova T V, Homola T, Bryukvin A and Cameron D C 2018 Catalytic performance of Ag2O and Ag doped CeO2 prepared by atomic layer deposition for diesel soot oxidation Coatings 8 237

    [88] Mackus A J M, Weber M J, Thissen N F W, Garcia-Alonso D, Vervuurt R H J, Assali S, Bol A A, Verheijen M A and Kessels W M M 2016 Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation Nanotechnology 27 034001

    [89] Gould T D, Lubers A M, Corpuz A R, Weimer A W, Falconer J L and Medlin J W 2015 Controlling nanoscale properties of supported platinum catalysts through atomic layer deposition ACS Catal. 5 1344–52

    [90] Yan H et al 2017 Bottom-up precise synthesis of stable platinum dimers on graphene Nat. Commun. 8 1070

    [91] Lu J L 2022 Atomic lego catalysts synthesized by atomic layer deposition Acc. Mater. Res. 3 358–68

    [92] Li X et al 2022 Functional CeOx nanoglues for robust atomically dispersed catalysts Nature 611 284–8

    [93] XieSH et al 2022 Pt atomic single-layer catalyst embedded in defect-enriched ceria for efficient CO oxidation J. Am. Chem. Soc. 144 21255–66

    [94] Lu Y B, Zhang Z H, Lin F, Wang H M and Wang Y 2020 Single-atom automobile exhaust catalysts ChemNanoMat 6 1659–82

    [95] Jones J et al 2016 Thermally stable single-atom platinum-on-ceria catalysts via atom trapping Science 353 150–4

    [96] Yan D X, Chen J and Jia H P 2020 Temperature-induced structure reconstruction to prepare a thermally stable single-atom platinum catalyst Angew. Chem. Int. Ed. 59 13562–7

    [97] Jeong H, Kwon O, Kim B S, Bae J, Shin S, Kim H E, Kim J and Lee H 2020 Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts Nat. Catal. 3 368–75

    [98] Kim C H, Qi G S, Dahlberg K and Li W 2010 Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust Science 327 1624–7

    [99] Wang W C et al 2012 Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn2O5 for NO oxidation in diesel exhaust Science 337 832–5

    [100] Chen Z Z, Liu X, Cho K, Chen R and Shan B 2015 Density functional theory study of the oxygen chemistry and NO oxidation mechanism on low-index surfaces of SmMn2O5 mullite ACS Catal. 5 4913–26

    [101] Liu X, Yang J Q, Shen G R, Shen M Q, Zhao Y K, Cho K, Shan B and Chen R 2019 Tuning the structure of bifunctional Pt/SmMn2O5 interfaces for promoted low-temperature CO oxidation activity Nanoscale 11 8150–9

    [102] Mao X Y, Lin C, Graham G W and Gorte R J 2020 A perspective on thin-film perovskites as supports for metal catalysts ACS Catal. 10 8840–9

    [103] Lin C, Foucher A C, Ji Y C, Stach E A and Gorte R J 2020 Investigation of Rh-titanate (ATiO3) interactions on high-surface-area perovskite thin films prepared by atomic layer deposition J. Mater. Chem. A 8 16973–84

    [104] Lu J L, Liu B, Greeley J P, Feng Z X, Libera J A, Lei Y, Bedzyk M J, Stair P C and Elam J W 2012 Porous alumina protective coatings on palladium nanoparticles by self-poisoned atomic layer deposition Chem. Mater. 24 2047–55

    [105] LuJL,FuBS,KungMC,XiaoGM,ElamJW, KungHH and Stair P C 2012 Coking-and sintering-resistant palladium catalysts achieved through atomic layer deposition Science 335 1205–8

    [106] Lu J L and Stair P C 2010 Low-temperature ABC-type atomic layer deposition: synthesis of highly uniform ultrafine supported metal nanoparticles Angew. Chem. Int. Ed. 49 2547–51

    [107] Canlas C P, Lu J L, Ray N A, Grosso-Giordano N A, Lee S, Elam J W, Winans R E, Van Duyne R P, Stair P C and Notestein J M 2012 Shape-selective sieving layers on an oxide catalyst surface Nat. Chem. 4 1030–6

    [108] Piernavieja-Hermida M, Lu Z, White A, Low K B, Wu T P, Elam J W, Wu Z L and Lei Y 2016 Towards ALD thin film stabilized single-atom Pd1 catalysts Nanoscale 8 15348–56

    [109] Zhang S F et al 2022 Surface isolation of single metal complexes or clusters by a coating sieving layer via atomic layer deposition Cell Rep. Phys. Sci. 3 100787

    [110] Wen Y W, Cai J M, Zhang J, Yang J Q, Shi L, Cao K, Chen R and Shan B 2019 Edge-selective growth of MCp2 (M = Fe, Co, and Ni) precursors on Pt nanoparticles in atomic layer deposition: a combined theoretical and experimental study Chem. Mater. 31 101–11

    [111] Yang J Q, Cao K, Hu Q, Wen Y W, Liu X, Chen R and Shan B 2020 Unravelling the selective growth mechanism of AlOx with dimethylaluminum isopropoxide as a precursor in atomic layer deposition: a combined theoretical and experimental study J. Mater. Chem. A 8 4308–17

    [112] CaiJM,MerkxMJM,LanYX,JingY, CaoK,Wen YW, Kessels W M M, Mackus A J M and Chen R 2021 Dependence of inherent selective atomic layer deposition of FeOx on Pt nanoparticles on the coreactant and temperature J. Vac. Sci. Technol. A 39 012404

    [113] Gao Z and Qin Y 2017 Design and properties of confined nanocatalysts by atomic layer deposition Acc. Chem. Res. 50 2309–16

    [114] Xu D et al 2017 Controllable deposition of Pt nanoparticles into a KL zeolite by atomic layer deposition for highly efficient reforming of n-heptane to aromatics Catal. Sci. Technol. 7 1342–50

    [115] Gao Z, Dong M, Wang G Z, Sheng P, Wu Z W, Yang H M, Zhang B, Wang G F, Wang J G and Qin Y 2015 Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions Angew. Chem. Int. Ed. 54 9006–10

    [116] Wang M H, Gao Z, Zhang B, Yang H M, Qiao Y, Chen S, Ge H B, Zhang J K and Qin Y 2016 Ultrathin coating of confined Pt nanocatalysts by atomic layer deposition for enhanced catalytic performance in hydrogenation reactions Chem. Eur. J. 22 8438–43

    [117] Gao Y, Park J and Liang X H 2018 Synergic titanium nitride coating and titanium doping by atomic layer deposition for stable-and high-performance Li-Ion battery J. Electrochem. Soc. 165 A3871–7

    [118] Lee D S H, Im W B and Liang X H 2019 High density conductive LiFePO4 cathode with enhanced high-rate and high temperature performance Mater. Chem. Phys. 232 367–73

    [119] Jin Y, Yu H, He X Q and Liang X H 2022 Stabilizing the interface of all-solid-state electrolytes against cathode electrodes by atomic layer deposition ACS Appl. Energy Mater. 5 760–9

    [120] Shi Y, Zhang M H, Qian D N and Meng Y S 2016 Ultrathin Al2O3 coatings for improved cycling performance and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode material Electrochim. Acta 203 154–61

    [121] ZhaoLN,ChenGR,WengYH,Yan TT, ShiLY, AnZX and Zhang D S 2020 Precise Al2O3 coating on LiNi0.5Co0.2Mn0.3O2 by atomic layer deposition restrains the shuttle effect of transition metals in Li-ion capacitors Chem. Eng. J. 401 126138

    [122] AhnJ,JangEK,Yoon S,LeeSJ,SungSJ,KimDHand Cho K Y 2019 Ultrathin ZrO2 on LiNi0.5Mn0.3Co0.2O2 electrode surface via atomic layer deposition for high-voltage operation in lithium-ion batteries Appl. Surf. Sci. 484 701–9

    [123] KongJZ,WangSS,TaiGA,ZhuL,WangLG,ZhaiHF, Wu D, Li A D and Li H 2016 Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by ultrathin ZrO2 coating J. Alloys Compd. 657 593–600

    [124] KongJZ,RenC,TaiGA,ZhangX,LiAD,Wu D,LiHand Zhou F 2014 Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material J. Power Sources 266 433–9

    [125] Neudeck S, Mazilkin A, Reitz C, Hartmann P, Janek J and Brezesinski T 2019 Effect of low-temperature Al2O3 ALD coating on Ni-rich layered oxide composite cathode on the long-term cycling performance of lithium-ion batteries Sci. Rep. 9 5328

    [126] WangX,CaiJY, LiuYQ,HanXX,RenT, LiJL,LiuYZ and Meng X B 2021 Atomic-scale constituting stable interface for improved LiNi0.6Mn0.2Co0.2O2 cathodes of lithium-ion batteries Nanotechnology 32 115401

    [127] KongJZ,ChenY, CaoYQ,WangQZ,LiAD,LiHand Zhou F 2019 Enhanced electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 coated by molecular layer deposition derived dual-functional C-Al2O3 composite coating J. Alloys Compd. 799 89–98

    [128] LiJW, XiangJR,YiG,TangYT, ShaoHC,LiuX,ShanB and Chen R 2022 Reduction of surface residual lithium compounds for single-crystal LiNi0.6Mn0.2Co0.2O2 via Al2O3 atomic layer deposition and post-annealing Coatings 12 84

    [129] QinCC,CaoJL,ChenJ,DaiGL,Wu TF, ChenYB, Tang Y F, Li A D and Chen Y F 2016 Improvement of electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode active material by ultrathin TiO2 coating Dalton Trans. 45 9669–75

    [130] Mohanty D et al 2016 Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: preventing surface phase transitions for high-voltage lithium-ion batteries Sci. Rep. 6 26532

    [131] Zhu W C, Huang X, Liu T T, Xie Z Q, Wang Y, Tian K, Bu L M, Wang H B, Gao L J and Zhao J Q 2019 Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges Coatings 9 92

    [132] Shi Y, Xing Y J, Kim K, Yu T, Lipson A L, Dameron A and Connell J G 2021 Communication-reduction of DC resistance of Ni-rich lithium transition metal oxide cathode by atomic layer deposition J. Electrochem. Soc. 168 040501

    [133] Tesfamhret Y, Younesi R and Berg E J 2022 Influence of Al2O3 coatings on HF induced transition metal dissolution from lithium-ion cathodes J. Electrochem. Soc. 169 010530

    [134] LiuY, LiuWB,ZhuMY, LiY, LiWX,ZhengF, ShenLY, Dang M Y and Zhang J J 2021 Coating ultra-thin TiN layer onto LiNi0.8Co0.1Mn0.1O2 cathode material by atomic layer deposition for high-performance lithium-ion batteries J. Alloys Compd. 888 161594

    [135] Xie J et al 2017 Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling ACS Nano 11 7019–27

    [136] Akella S H, Taragin S, Wang Y, Aviv H, Kozen A C, Zysler M, Wang L L, Sharon D, Lee S B and Noked M 2021 Improvement of the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 via atomic layer deposition of lithium-rich zirconium phosphate coatings ACS Appl. Mater. Interfaces 13 61733–41

    [137] Xiao X C, Ahn D, Liu Z Y, Kim J H and Lu P 2013 Atomic layer coating to mitigate capacity fading associated with manganese dissolution in lithium ion batteries Electrochem. Commun. 32 31–34

    [138] KimJW, KimDH,OhDY, LeeH,KimJH,LeeJHand Jung Y S 2015 Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries J. Power Sources 274 1254–62

    [139] Lee B Y, Krajewski M, Huang M K, Hasin P and Lin J Y 2021 Spinel LiNi0.5Mn1.5O4 with ultra-thin Al2O3 coating for Li-ion batteries: investigation of improved cycling performance at elevated temperature J. Solid State Electrochem. 25 2665–74

    [140] Xiao B W et al 2017 Nanoscale manipulation of spinel lithium nickel manganese oxide surface by multisite Ti occupation as high-performance cathode Adv. Mater. 29 1703764

    [141] .stli E R, Ebadi M, Tesfamhret Y, Mahmoodinia M, Lacey M J, Brandell D, Svensson A M, Selbach S M and Wagner N P 2022 On the durability of protective titania coatings on high-voltage spinel cathodes ChemSusChem 15 e202200324

    [142] Patel R L, Palaparty S A and Liang X H 2017 Ultrathin conductive CeO2 coating for significant improvement in electrochemical performance of LiMn1.5Ni0.5O4 cathode materials J. Electrochem. Soc. 164 A6236–43

    [143] GaoY, HeXQ,MaL,Wu TP, ParkJandLiangXH2020 Understanding cation doping achieved by atomic layer deposition for high-performance Li-Ion batteries Electrochim. Acta 340 135951

    [144] Park J S, Meng X B, Elam J W, Hao S Q, Wolverton C, Kim C and Cabana J 2014 Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries Chem. Mater. 26 3128–34

    [145] Tiurin O, Solomatin N, Auinat M and Ein-Eli Y 2020 Atomic layer deposition (ALD) of lithium fluoride (LiF) protective film on Li-ion battery LiMn1.5Ni0.5O4 cathode powder material J. Power Sources 448 227373

    [146] Deng S X et al 2017 New insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes Nano Energy 38 19–27

    [147] Deng S X et al 2019 Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes Nano Energy 65 103988

    [148] Liu J, Banis M N, Sun Q, Lushington A, Li R Y, Sham T K and Sun X L 2014 Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries Adv. Mater. 26 6472–7

    [149] GaoH,CaiJY, XuGL,LiLX,RenY, MengXB,AmineK and Chen Z H 2019 Surface modification for suppressing interfacial parasitic reactions of a nickel-rich lithium-ion cathode Chem. Mater. 31 2723–30

    [150] Qureshi Z A, Tariq H A, Shakoor R A, Kahraman R and AlQaradawi S 2022 Impact of coatings on the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials: a focused review Ceram. Int. 48 7374–92

    [151] Gao Y, Yu H, Sandineni P, He X Q, Choudhury A, Park J and Liang X H 2021 Fe doping in LiMn1.5Ni0.5O4 by atomic layer deposition followed by annealing: depths and occupation sites J. Phys. Chem. C 125 7560–7

    [152] Zhang H, Yang Y, Ren D S, Wang L and He X M 2021 Graphite as anode materials: fundamental mechanism, recent progress and advances Energy Storage Mater. 36 147–70

    [153] Jung Y S, Cavanagh A S, Riley L A, Kang S H, Dillon A C, Groner M D, George S M and Lee S H 2010 Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries Adv. Mater. 22 2172–6

    [154] Wang H Y and Wang F M 2013 Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode J. Power Sources 233 1–5

    [155] Jung Y S, Lu P, Cavanagh A S, Ban C M, Kim G H, Lee S H, George S M, Harris S J and Dillon A C 2013 Unexpected improved performance of ALD coated LiCoO2/graphite Li-ion batteries Adv. Energy Mater. 3 213–9

    [156] Zou F, Nallan H C, Dolocan A, Xie Q, Li J Y, Coffey B M, Ekerdt J G and Manthiram A 2021 Long-life LiNi0.5Mn1.5O4/graphite lithium-ion cells with an artificial graphite-electrolyte interface Energy Storage Mater. 43 499–508

    [157] LiY, SunYJ,XuGJ,LuY, ZhangS,XueLG,JurJSand Zhang X W 2014 Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating J. Mater. Chem. A 2 11417–25

    [158] Ren J G, Wu Q H, Hong G, Zhang W J, Wu H M, Amine K, Yang J B and Lee S T 2013 Silicon-graphene composite anodes for high-energy lithium batteries Energy Technol. 1 77–84

    [159] Xiong S, Qian X F, Zhong Z X and Wang Y 2022 Atomic layer deposition for membrane modification, functionalization and preparation: a review J. Membrane Sci. 658 120740

    [160] Wang F F, Ke X Y, Shen K, Zhu L and Yuan C 2022 A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries Adv. Mater. Technol. 7 2100772

    [161] Wang X R and Yushin G 2015 Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors Energy Environ. Sci. 8 1889–904

    [162] Chen H, Lin Q, Xu Q, Yang Y, Shao Z P and Wang Y 2014 Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries J. Membrane Sci. 458 217–24

    [163] Shen X et al 2018 Core-shell structured ceramic nonwoven separators by atomic layer deposition for safe lithium-ion batteries Appl. Surf. Sci. 441 165–73

    [164] Wang W, Yuan Y, Wang J L, Zhang Y, Liao C, Mu X W, Sheng H B, Kan Y C, Song L and Hu Y 2019 Enhanced electrochemical and safety performance of lithium metal batteries enabled by the atom layer deposition on PVDF-HFP separator ACS Appl. Energy Mater. 2 4167–74

    [165] Chao C-H et al 2021 Roll-to-roll atomic layer deposition of titania coating on polymeric separators for lithium ion batteries J. Power Sources 482 228896

    [166] Liu C, Wang C C, Kei C C, Hsueh Y C and Perng T P 2009 Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells Small 5 1535–8

    [167] HsuehYC,WangCC,KeiCC,LinYH,LiuCand Perng T P 2012 Fabrication of catalyst by atomic layer deposition for high specific power density proton exchange membrane fuel cells J. Catal. 294 63–68

    [168] ShuT, LiaoSJ,HsiehCT, RoyAK,LiuYY, TzouDYand Chen W Y 2012 Fabrication of platinum electrocatalysts on carbon nanotubes using atomic layer deposition for proton exchange membrane fuel cells Electrochim. Acta 75 101–7

    [169] Hsieh C T, Liu Y Y, Tzou D Y and Chen W Y 2012 Atomic layer deposition of platinum nanocatalysts onto three-dimensional carbon nanotube/graphene hybrid J. Phys. Chem. C 116 26735–43

    [170] LeeWJ,BeraS,ShinHC,HongWP, OhSJ,Wan ZXand Kwon S H 2019 Uniform and size-controlled synthesis of Pt nanoparticle catalyst by fluidized bed reactor atomic layer deposition for PEMFCs Adv. Mater. Interfaces 6 1901210

    [171] LeeWJ,BeraS,KimCM,KohEK,HongWP, OhSJ, Cho E and Kwon S H 2020 Synthesis of highly dispersed Pt nanoparticles into carbon supports by fluidized bed reactor atomic layer deposition to boost PEMFC performance NPG Asia Mater. 12 40

    [172] Gan J, Zhang J K, Zhang B Y, Chen W Y, Niu D F, Qin Y, Duan X Z and Zhou X G 2020 Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition J. Energy Chem. 45 59–66

    [173] XuSC et al 2018 Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition Nat. Catal. 624 624–30

    [174] LiuHY, SongYJ,LiSS,LiJ,LiuY, JiangYBand Guo X W 2016 Synthesis of core/shell structured Pd3Au@Pt/C with enhanced electrocatalytic activity by regioselective atomic layer deposition combined with a wet chemical method RSC Adv. 6 66712–20

    [175] Zhang L et al 2019 Pt/Pd single-atom alloys as highly active electrochemical catalysts and the origin of enhanced activity ACS Catal. 9 9350–8

    [176] Song Z X et al 2020 Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction Small 16 2003096

    [177] Cheng N C, Banis M N, Liu J, Riese A, Mu S C, Li R Y, Sham T K and Sun X L 2015 Atomic scale enhancement of metal-support interactions between Pt and ZrC for highly stable electrocatalysts Energy Environ. Sci. 8 1450–5

    [178] Saha S, Rodas J A C, Tan S and Li D M 2018 Performance evaluation of platinum-molybdenum carbide nanocatalysts with ultralow platinum loading on anode and cathode catalyst layers of proton exchange membrane fuel cells J. Power Sources 378 742–9

    [179] Liu Y R, Hsueh Y C and Perng T P 2017 Fabrication of TiN inverse opal structure and Pt nanoparticles by atomic layer deposition for proton exchange membrane fuel cell Int. J. Hydrog. Energy 42 10175–83

    [180] TangXL,ZhangSH,Yu J,LüCX,ChiYQ,SunJW, Song Y, Yuan D, Ma Z L and Zhang L X 2020 Preparation of platinum catalysts on porous titanium nitride supports by atomic layer deposition and their catalytic performance for oxygen reduction reaction Acta Phys.-Chim. Sin. 36 1906070

    [181] Du Q, Wu J B and Yang H 2014 Pt@Nb-TiO2 catalyst membranes fabricated by electrospinning and atomic layer deposition ACS Catal. 4 144–51

    [182] He C, Wang X F, Sankarasubramanian S, Yadav A, Bhattacharyya K, Liang X H and Ramani V 2020 Highly durable and active Pt/Sb-doped SnO2 oxygen reduction reaction electrocatalysts produced by atomic layer deposition ACS Appl. Energy Mater. 3 5774–83

    [183] Chen J W, Li Z J, Chen Y H, Zhang J, Luo Y, Wang G and Wang R L 2020 An enhanced activity of Pt/CeO2/CNT triple junction interface catalyst prepared by atomic layer deposition for oxygen reduction reaction Chem. Phys. Lett. 755 137793

    [184] Cheng N C, Shao Y Y, Liu J and Sun X L 2016 Electrocatalysts by atomic layer deposition for fuel cell applications Nano Energy 29 220–42

    [185] Yang H M, Chen Y and Qin Y 2020 Application of atomic layer deposition in fabricating high-efficiency electrocatalysts Chin. J. Catal. 41 227–41

    [186] King J S, Wittstock A, Biener J, Kucheyev S O, Wang Y M, Baumann T F, Giri S K, Hamza A V, Baeumer M and Bent S F 2008 Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels Nano Lett. 8 2405–9

    [187] Lubers A M, Muhich C L, Anderson K M and Weimer A W 2015 Mechanistic studies for depositing highly dispersed Pt nanoparticles on carbon by use of trimethyl(methylcyclopentadienyl)platinum(IV) reactions with O2 and H2 J. Nanopart. Res. 17 179

    [188] WangYJ,FangBZ,LiH,BiXTandWangHJ2016 Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells Prog. Mater. Sci. 82 445–98

    [189] Sinniah J D, Wong W Y, Loh K S, Yunus R M and Timmiati S N 2022 Perspectives on carbon-alternative materials as Pt catalyst supports for a durable oxygen reduction reaction in proton exchange membrane fuel cells J. Power Sources 534 231422

    [190] Hsu I J, Hansgen D A, McCandless B E, Willis B G and Chen J G 2011 Atomic layer deposition of Pt on tungsten monocarbide (WC) for the oxygen reduction reaction J. Phys. Chem. C 115 3709–15

    [191] Saha S, Martin B, Leonard B and Li D M 2016 Probing synergetic effects between platinum nanoparticles deposited via atomic layer deposition and a molybdenum carbide nanotube support through surface characterization and device performance J. Mater. Chem. A 4 9253–65

    [192] ChenYG,WangJJ,MengXB,ZhongY, LiRY, SunXL, Ye S Y and Knights S 2011 Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells Int. J. Hydrog. Energy 36 11085–92

    [193] Lu Q Z, Wang Z L, Tang Y T, Huang C J, Zhang A M, Liu F, Liu X, Shan B and Chen R 2022 Well-controlled Pt-CeO2-nitrogen doped carbon triple-junction catalysts with enhanced activity and durability for the oxygen reduction reaction Sustain. Energy Fuels 6 2989–95

    [194] XuSC et al 2021 Direct integration of strained-Pt catalysts into proton-exchange-membrane fuel cells with atomic layer deposition Adv. Mater. 33 2007885

    [195] Sairanen E, Figueiredo M C, Karinen R, Santasalo-Aarnio A, Jiang H, Sainio J, Kallio T and Lehtonen J 2014 Atomic layer deposition in the preparation of Bi-metallic, platinum-based catalysts for fuel cell applications Appl. Catal. B 148–149 11–21

    [196] LeeWJ,BeraS,Woo HJ,HongW, ParkJY, OhSJand Kwon S H 2022 Atomic layer deposition enabled PtNi alloy catalysts for accelerated fuel-cell oxygen reduction activity and stability Chem. Eng. J. 442 136123

    [197] Zhang L et al 2022 Single atom surface engineering: a new strategy to boost electrochemical activities of Pt catalysts Nano Energy 93 106813

    [198] Kim Y et al 2022 Improving intrinsic oxygen reduction activity and stability: atomic layer deposition preparation of platinum-titanium alloy catalysts Appl. Catal. B 300 120741

    [199] Dull S M, Vinogradova O, Xu S C, Koshy D M, Vullum P E, Torgersen J, Kirsch S, Viswanathan V, Jaramillo T F and Prinz F B 2022 Alloyed Pt-Zn oxygen reduction catalysts for proton exchange membrane fuel cells ACS Appl. Energy Mater. 5 8282–91

    [200] HuangCJ,LiuH,TangYT,LuQZ,ChuSQ,LiuX,ShanB and Chen R 2023 Constructing uniform sub-3 nm PtZn intermetallic nanocrystals via atomic layer deposition for fuel cell oxygen reduction Appl. Catal. B 320 121986

    [201] LimJ,ShimJW, KimDJ,ParkJS,Koo JandShimJH 2021 Improvement of fuel cell catalyst performance through zirconia protective layer coating by atomic layer deposition J. Power Sources 498 229923

    [202] Zhang L et al 2019 Rational design of porous structures via molecular layer deposition as an effective stabilizer for enhancing Pt ORR performance Nano Energy 60 111–8

    [203] Liu Q, Ranocchiari M and van Bokhoven J A 2022 Catalyst overcoating engineering towards high-performance electrocatalysis Chem. Soc. Rev. 51 188–236

    [204] Chung S, Choun M, Jeong B, Lee J and Lee J 2016 Atomic layer deposition of ultrathin layered TiO2 on Pt/C cathode catalyst for extended durability in polymer electrolyte fuel cells J. Energy Chem. 25 258–64

    [205] McNeary W W, Linico A E, Ngo C, van Rooij S, Haussener S, Maguire M E, Pylypenko S and Weimer A W 2018 Atomic layer deposition of TiO2 for stabilization of Pt nanoparticle oxygen reduction reaction catalysts J. Appl. Electrochem. 48 973–84

    [206] Lee W J, Bera S, Woo H, Kim H G, Baek J H, Hong W, Park J Y, Oh SJandKwon S H 2022 In situ engineering of a metal oxide protective layer into Pt/carbon fuel-cell catalysts by atomic layer deposition Chem. Mater. 34 5949–59

    [207] Liu H, Lu Q Z, Gao Y X, Huang C J, Zhang A M, Liu F, Xu H H, Liu X, Shan B and Chen R 2023 Nitrogen doped titania stabilized Pt/C catalyst via selective atomic layer deposition for fuel cell oxygen reduction Chem. Eng. J. 463 142405

    [208] Marichy C, Ercolano G, Caputo G, Willinger M G, Jones D, Rozière J, Pinna N and Cavaliere S 2016 ALD SnO2 protective decoration enhances the durability of a Pt based electrocatalyst J. Mater. Chem. A 4 969–75

    [209] McNeary W W, Zaccarine S F, Lai A, Linico A E, Pylypenko S and Weimer A W 2019 Improved durability and activity of Pt/C catalysts through atomic layer deposition of tungsten nitride and subsequent thermal treatment Appl. Catal. B 254 587–93

    [210] Cheng N C, Banis M N, Liu J, Riese A, Li X, Li R Y, Ye S Y, Knights S and Sun X L 2015 Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction Adv. Mater. 27 277–81

    [211] Song Z X, Wang B Q, Cheng N C, Yang L J, Banham D, Li R Y, Ye S Y and Sun X L 2017 Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs J. Mater. Chem. A 5 9760–7

    [212] Hussain S, Erikson H, Kongi N, Tarre A, Ritslaid P, R.hn M, Matisen L, Merisalu M, Sammelselg V and Tammeveski K 2018 Pt nanoparticles sputter-deposited on TiO2/MWCNT composites prepared by atomic layer deposition: improved electrocatalytic activity towards the oxygen reduction reaction and durability in acid media Int. J. Hydrog. Energy 43 4967–77

    [213] Hussain S, Erikson H, Kongi N, Tarre A, Ritslaid P, Kook M, R.hn M, Merisalu M, Sammelselg V and Tammeveski K 2019 Improved ORR activity and long-term durability of Pt nanoparticles deposited on TiO2-decorated multiwall carbon nanotubes J. Electrochem. Soc. 166 F1284–91

    [214] Song Z X et al 2018 Origin of achieving the enhanced activity and stability of Pt electrocatalysts with strong metal-support interactions via atomic layer deposition Nano Energy 53 716–25

    [215] Sabarirajan D C, George T Y, Vlahakis J, White R D and Zenyuk I V 2019 Atomic layer deposition of Pt nanoelectrode array for polymer electrolyte fuel cells J. Electrochem. Soc. 166 F3081–8

    [216] Atwa M, Li X A, Wang Z X, Dull S, Xu S C, Tong X, Tang R, Nishihara H, Prinzceg F and Birss V 2021 Scalable nanoporous carbon films allow line-of-sight 3D atomic layer deposition of Pt: towards a new generation catalyst layer for PEM fuel cells Mater. Horiz. 8 2451–62

    [217] Dull S M et al 2021 Bottom-Up fabrication of oxygen reduction electrodes with atomic layer deposition for high-power-density PEMFCs Cell Rep. Phys. Sci. 2 100297

    [218] Shu T, Dang D, Xu D W, Chen R, Liao S J, Hsieh C T, Su A, Song H Y and Du L 2015 High-performance MEA prepared by direct deposition of platinum on the gas diffusion layer using an atomic layer deposition technique Electrochim. Acta 177 168–73

    [219] Song Z X et al 2019 Ultralow loading and high-performing Pt catalyst for a polymer electrolyte membrane fuel cell anode achieved by atomic layer deposition ACS Catal. 9 5365–74

    [220] Lubers A M, McNeary W W, Ludlow D J, Drake A W, Faust M, Maguire M E, Kodas M U, Seipenbusch M and Weimer A W 2017 Proton exchange membrane fuel cell flooding caused by residual functional groups after platinum atomic layer deposition Electrochim. Acta 237 192–8

    [221] McNeary W W, Linico A E and Weimer A W 2020 Water management implications for ALD-modified polymer electrolyte membrane fuel cell catalysts J. Nanopart. Res. 22 185

    [222] Choun M, Chung S, Jeon H, Uhm S and Lee J 2012 Atomic-layer-deposited TiO2 on cathode gas diffusion layer for low humidity operation in hydrogen fuel cells Electrochem. Commun. 24 108–11

    [223] Lim I S, Kang B, Park J Y and Kim M S 2021 Performance improvement of polymer electrolyte membrane fuel cell by gas diffusion layer with atomic-layer-deposited HfO2 on microporous layer Energy Convers. Manage. 236 114070

    [224] Toikkanen O, Nisula M, Pohjalainen E, Hietala S, Havansi H, Ruotsalainen J, Halttunen S, Karppinen M and Kallio T 2015 Al2O3 coating grown on Nafion membranes by atomic layer deposition J. Membrane Sci. 495 101–9

    [225] Libera J A, Elam J W and Pellin M J 2008 Conformal ZnO coatings on high surface area silica gel using atomic layer deposition Thin Solid Films 516 6158–66

    [226] Strempel V E, d’Alnoncourt R N, Driess M and Rosowski F 2017 Atomic layer deposition on porous powders with in situ gravimetric monitoring in a modular fixed bed reactor setup Rev. Sci. Instrum. 88 074102

    [227] Voigt P, Haimi E, Lahtinen J, Cheah Y W, M.kel. E, Viinikainen T and Puurunen R L 2019 Nickel supported on mesoporous zirconium oxide by atomic layer deposition: initial fixed-bed reactor study Top. Catal. 62 611–20

    [228] Hakim L F, Blackson J, George S M and Weimer A W 2005 Nanocoating individual silica nanoparticles by atomic layer deposition in a fluidized bed reactor Chem. Vap. Depos. 11 420–5

    [229] McCormick J A, Cloutier B L, Weimer A W and George S M 2007 Rotary reactor for atomic layer deposition on large quantities of nanoparticles J. Vac. Sci. Technol. A 25 67–74

    [230] Park S W, Kim J W, Choi H J and Shim J H 2014 Vibration atomic layer deposition for conformal nanoparticle coating J. Vac. Sci. Technol. A 32 01A115

    [231] Lu Z, Yanguas-Gil A, Kang D, Darapaneni P, Mane A U, Marshall C L and Elam J W 2022 Scalable synthesis of supported catalysts using fluidized bed atomic layer deposition J. Vac. Sci. Technol. A 40 042404

    [232] Coile M W, Young M J, Libera J A, Mane A U and Elam J W 2020 High-capacity rotary drum for atomic layer deposition onto powders and small mechanical parts in a hot-walled viscous flow reactor J. Vac. Sci. Technol. A 38 052403

    [233] LiJG,HuiLF,ZhangWL,LuJ,YangYJandFengH2021 Scalable production of ultra small TiO2 nano crystal/activated carbon composites by atomic layer deposition for efficient removal of organic pollutants Adv. Powder Technol. 32 728–39

    [234] Lee W J, Kwon O, Huang R J, Lin C, Gorte R J and Vohs J M 2022 Flexible atomic layer deposition system for coating porous materials J. Vac. Sci. Technol. A 40 032401

    [235] Duan C L, Liu X, Shan B and Chen R 2015 Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition Rev. Sci. Instrum. 86 075101

    [236] LiZS,XiangJR,LiuX,LiXB,LiLJ,ShanBandChen R 2022 A combined multiscale modeling and experimental study on surface modification of high-volume micro-nanoparticles with atomic accuracy Int. J. Extreme Manuf. 4 025101

    [237] van Ommen J R, Kooijman D, de Niet M, Talebi M and Goulas A 2015 Continuous production of nanostructured particles using spatial atomic layer deposition J. Vac. Sci. Technol. A 33 021513

    [238] Hartig J, Howard H C, Stelmach T J and Weimer A W 2021 DEM modeling of fine powder convection in a continuous vibrating bed reactor Powder Technol. 386 209–20

    [239] Poodt P, Cameron D C, Dickey E, George S M, Kuznetsov V, Parsons G N, Roozeboom F, Sundaram G and Vermeer A 2012 Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition J. Vac. Sci. Technol. A 30 010802

    [240] Mu.noz-Rojas D, Maindron T, Esteve A, Piallat F, Kools J C S and Decams J M 2019 Speeding up the unique assets of atomic layer deposition Mater. Today Chem. 12 96–120

    [241] Sharma K, Routkevitch D, Varaksa N and George S M 2016 Spatial atomic layer deposition on flexible porous substrates: znO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes J. Vac. Sci. Technol. A 34 01A146

    [242] Yersak A S, Sharma K, Wallas J M, Dameron A A, Li X, Yang Y, Hurst K E, Ban C, Tenent R C and George S M 2018 Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes J. Vac. Sci. Technol. A 36 01A123

    [in Chinese], [in Chinese], [in Chinese]. Atomic-scale engineering of advanced catalytic and energy materials via atomic layer deposition for eco-friendly vehicles[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 22005
    Download Citation