• Laser & Optoelectronics Progress
  • Vol. 61, Issue 18, 1815004 (2024)
Chunming Li1, Lü Dayong1,*, and Songling Yuan2
Author Affiliations
  • 1School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050091, Hebei, China
  • 2Shijiazhuang Jinghua Electronic Industry Co., Ltd., Shijiazhuang 050299, Hebei, China
  • show less
    DOI: 10.3788/LOP240510 Cite this Article Set citation alerts
    Chunming Li, Lü Dayong, Songling Yuan. Camera Calibration Based on Improved Grey-Wolf Genetic Algorithm[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1815004 Copy Citation Text show less
    Pinhole imaging model of camera
    Fig. 1. Pinhole imaging model of camera
    Camera distortion
    Fig. 2. Camera distortion
    Variation of convergence factor
    Fig. 3. Variation of convergence factor
    Improved grey-wolf genetic algorithm flow
    Fig. 4. Improved grey-wolf genetic algorithm flow
    Some images of checkerboard grid captured by camera
    Fig. 5. Some images of checkerboard grid captured by camera
    Corner point extraction of chessboard pattern
    Fig. 6. Corner point extraction of chessboard pattern
    Average reprojection error curve
    Fig. 7. Average reprojection error curve
    Distribution of reprojection error after optimization with different algorithms. (a) GWO; (b) IGA; (c) SSA; (d) proposed algorithm
    Fig. 8. Distribution of reprojection error after optimization with different algorithms. (a) GWO; (b) IGA; (c) SSA; (d) proposed algorithm
    Average re-projection error after repeated calibration
    Fig. 9. Average re-projection error after repeated calibration
    Calibration results under different noise levels
    Fig. 10. Calibration results under different noise levels
    ParameterNmaxNTsize0c0cendPm0
    Initial value100500150.80.30.01
    Table 1. Initial parameters of improved grey-wolf genetic algorithm
    Parameterfx /pixelfy /pixelu0 /pixelv0 /pixelk1k2k3p1p2ρ /pixel
    Value650.09350648.58910302.91380248.276600.30840-1.158500.959790.00713-0.009800.02054
    Table 2. Camera calibration results based on improved grey-wolf genetic algorithm
    ParameterGWOIGASSAProposed algorithm
    fx /pixel640.08930649.59240650.13380650.09350
    fy /pixel638.56900647.93130648.44540648.58910
    u0 /pixel292.91620302.55000302.86850302.91380
    v0 /pixel238.27780248.40420248.41740248.27660
    k1-2.193800.382550.312600.30840
    k2-5.55630-2.18540-1.32660-1.15850
    k3-2.036300.822501.265500.95970
    p1-2.538800.000800.001700.00710
    p2-6.14320-0.00440-0.00930-0.00980
    ρ /pixel0.076640.051570.030340.02054
    Table 3. Calibration results of different algorithms