• Matter and Radiation at Extremes
  • Vol. 9, Issue 2, 024001 (2024)
J.-R. Marquès1,a), L. Lancia1, P. Loiseau2,3, P. Forestier-Colleoni1..., M. Tarisien4, E. Atukpor4, V. Bagnoud5,6, C. Brabetz5, F. Consoli7, J. Domange4, F. Hannachi4, P. Nicolaï8, M. Salvadori7 and B. Zielbauer5|Show fewer author(s)
Author Affiliations
  • 1LULI, CNRS, École Polytechnique, CEA, Sorbonne Université, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
  • 2CEA, DAM, DIF, 91297 Arpajon Cedex, France
  • 3Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Chatel, France
  • 4CENBG, CNRS-IN2P3, Université de Bordeaux, 33175 Gradignan Cedex, France
  • 5GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
  • 6University of Darmstadt, Schloßgartenstr., 764289 Darmstadt, Germany
  • 7ENEA Fusion and Technologies for Nuclear Safety Department, C.R. Frascati, Via Enrico Fermi 45, Frascati, Rome, Italy
  • 8CELIA, Université de Bordeaux–CNRS–CEA, 33405 Talence, France
  • show less
    DOI: 10.1063/5.0178253 Cite this Article
    J.-R. Marquès, L. Lancia, P. Loiseau, P. Forestier-Colleoni, M. Tarisien, E. Atukpor, V. Bagnoud, C. Brabetz, F. Consoli, J. Domange, F. Hannachi, P. Nicolaï, M. Salvadori, B. Zielbauer. Collisionless shock acceleration of protons in a plasma slab produced in a gas jet by the collision of two laser-driven hydrodynamic shockwaves[J]. Matter and Radiation at Extremes, 2024, 9(2): 024001 Copy Citation Text show less
    References

    [1] R.Blandford, D.Eichler. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Rep., 154, 1(1987).

    [2] D. C.Ellison, F. C.Jones. The plasma physics of shock acceleration. Space Sci. Rev., 58, 259(1991).

    [3] E.Amato, P.Blasi, D.Caprioli. Non-linear diffusive acceleration of heavy nuclei in supernova remnant shocks. Astropart. Phys., 34, 447(2011).

    [4] E. V.Gotthelf, S. S.Holt, U.Hwang, K.Koyama, M.Matsuura, M.Ozaki, R.Petre. Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature, 378, 255(1995).

    [5] O.Adriani, G. C.Barbarino, G. A.Bazilevskaya, R.Bellotti, M.Boezio, E. A.Bogomolov, L.Bonechi, M.Bongi, V.Bonvicini, S.Borisov, S.Bottai, A.Bruno, F.Cafagna, D.Campana, R.Carbone, P.Carlson, M.Casolino, G.Castellini, L.Consiglio, M. P.De Pascale, C.De Santis, N.De Simone, V.Di Felice, A. M.Galper, W.Gillard, L.Grishantseva, G.Jerse, A. V.Karelin, S. V.Koldashov, S. Y.Krutkov, A. N.Kvashnin, A.Leonov, V.Malakhov, V.Malvezzi, L.Marcelli, A. G.Mayorov, W.Menn, V. V.Mikhailov, E.Mocchiutti, A.Monaco, N.Mori, N.Nikonov, G.Osteria, F.Palma, P.Papini, M.Pearce, P.Picozza, C.Pizzolotto, M.Ricci, S. B.Ricciarini, L.Rossetto, R.Sarkar, M.Simon, R.Sparvoli, P.Spillantini, Y. I.Stozhkov, A.Vacchi, E.Vannuccini, G.Vasilyev, S. A.Voronov, J.Wu, Y. T.Yurkin, G.Zampa, N.Zampa, V. G.Zverev. PAMELA measurements of cosmic-ray proton and helium spectra. Science, 332, 69(2011).

    [6] A.Spitkovsky. Particle acceleration in relativistic collisionless shocks: Fermi process at last?. Astrophys. J., 682, L5(2008).

    [7] A.Spitkovsky. On the structure of relativistic collisionless shocks in electron-ion plasmas. Astrophys. J., 673, L39(2008).

    [8] R. P.Drake. The design of laboratory experiments to produce collisionless shocks of cosmic relevance. Phys. Plasmas, 7, 4690(2000).

    [9] A. D.Ash, D. M.Chambers, C.Courtois, R. O.Dendy, R. A. D.Grundy, K. G.McClements, N. C.Woolsey. Experiment on collisionless plasma interaction with applications to supernova remnant physics. Phys. Plasmas, 11, 3386(2004).

    [10] Y. A.Ali, P. G.Carolan, N. J.Conway, R. O.Dendy, R. G.Evans, R. A. D.Grundy, P.Helander, J. G.Kirk, K. G.McClements, P. A.Norreys, M. M.Notley, S. J.Pestehe, S. J.Rose, N. C.Woolsey. Collisionless shock and supernova remnant simulations on VULCAN. Phys. Plasmas, 8, 2439(2001).

    [11] C.Bruulsema, R. P.Drake, F.Fiuza, S.Funk, S.Glenzer, A.Grassi, G.Gregori, D. P.Higginson, C. K.Li, H.-S.Park, B. B.Pollock, B. A.Remington, H. G.Rinderknecht, J. S.Ross, W.Rozmus, D. D.Ryutov, Y.Sakawa, A.Spitkovsky, G. F.Swadling, S.Wilks. Electron acceleration in laboratory-produced turbulent collisionless shocks. Nat. Phys., 16, 916-920(2020).

    [12] J. R.Davies, R. A.Fonseca, M.Marti, W. B.Mori, C.Ren, L. O.Silva, F. S.Tsung. Proton shock acceleration in laser–plasma interactions. Phys. Rev. Lett., 92, 015002(2004).

    [13] E.Boella, F. F.Fiuza, R. A.Fonseca, C.Gong, D.Haberberger, C.Joshi, W. B.Mori, L. O.Silva, A.Stockem, S.Tochitsky. Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett., 109, 215001(2012).

    [14] E.Boella, F. F.Fiuza, R. A.Fonseca, D.Haberberger, C.Joshi, W. B.Mori, L. O.Silva, A.Stockem, S.Tochitsky. Ion acceleration from laser-driven electrostatic shocks. Phys. Plasmas, 20, 056304(2013).

    [15] M.Babzien, N. P.Dover, G. I.Dudnikova, M.Ispiriyan, Z.Najmudin, C. A. J.Palmer, I.Pogorelsky, M. N.Polyanskiy, J.Schreiber, P.Shkolnikov, V.Yakimenko. Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett., 106, 014801(2011).

    [16] S.Bulanov, T.Esirkepov, P.Migliozzi, F.Pegoraro, T.Tajima, F.Terranova. Neutrino oscillation studies with laser-driven beam dump facilities. Nucl. Instrum. Methods Phys. Res., Sect. A, 540, 25(2005).

    [17] C.Brown, S. V.Bulanov, E. M.Campbell, T. E.Cowan, W.Fountain, S. P.Hatchett, J.Johnson, M. H.Key, F.Pegoraro, D. M.Pennington, M. D.Perry, H.Powell, M.Roth, H.Ruhl, R. A.Snavely, S. C.Wilks, K.Yasuike. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett., 86, 436(2001).

    [18] S.Atzeni, J. J.Honrubia, R.Ramis, M.Temporal. Fast ignition induced by shocks generated by laser-accelerated proton beams. Plasma Phys. Controlled Fusion, 51, 035010(2009).

    [19] S.Atzeni, J. J.Honrubia, M.Temporal. Numerical study of fast ignition of ablatively imploded deuterium–tritium fusion capsules by ultra-intense proton beams. Phys. Plasmas, 9, 3098(2002).

    [20] F. P.Boody, R.Hopfl, H.Hora, J. C.Kelly. Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction and increased durability. Laser Part. Beams, 14, 443(1996).

    [21] M.Borghesi, S.Bulanov, D. H.Campbell, R. J.Clarke, M.Galimberti, L. A.Gizzi, M. G.Haines, A. J.MacKinnon, P.Patel, F.Pegoraro, H.Ruhl, A.Schiavi, O.Willi. Electric field detection in laser–plasma interaction experiments via the proton imaging technique. Phys. Plasmas, 9, 2214(2002).

    [22] P. A.Amendt, J. A.Frenje, S. P.Hatchett, J. P.Knauer, O. L.Landen, C. K.Li, A. J.Mackinnon, P. K.Patel, R. D.Petrasso, J. R.Rygg, T. C.Sangster, F. H.Séguin, V. A.Smalyuk, R. P. J.Town. Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography. Phys. Rev. Lett., 97, 135003(2006).

    [23] P.Audebert, M.Borghesi, S. V.Bulanov, J. C.Gauthier, K.L?wenbrück, A. J.Mackinnon, P.Patel, G.Pretzler, L.Romagnani, T.Toncian, O.Willi. Observation of collisionless shocks in laser–plasma experiments. Phys. Rev. Lett., 101, 025004(2008).

    [24] S. V.Bulanov, T. Z.Esirkepov, V. S.Khoroshkov, A.Kuznetsov, F.Pegoraro. Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A, 299, 240(2002).

    [25] S. V.Bulanov, V. S.Khoroshkov. Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep., 28, 453(2002).

    [26] C.Albaret, A.Antonetti, J. P.Chambaret, E.d’Humières, R.Ferrand, S.Fritzler, G.Grillon, D.Hulin, E.Lefebvre, V.Malka, S.Meyroneinc. Practicability of protontherapy using compact laser systems. Med. Phys., 31, 1587(2004).

    [27] E.Beyreuther, W.Enghardt, M.Gotz, L.Karsch, U.Masood, J.Pawelke, U.Schramm, K.Zeil. Towards ion beam therapy based on laser plasma accelerators. Acta Oncol., 56, 1359(2017).

    [28] R.Allott, F.Beg, E.Clark, R.Clarke, A.Dangor, K.Krushelnick, K.Ledingham, T.McCanny, P.McKenna, P.Norreys, I.Ross, R.Singhal, I.Spencer, M.Tatarakis, M.Zepf. Laser generation of proton beams for the production of short-lived positron emitting radioisotopes. Nucl. Instrum. Methods Phys. Res., Sect. B, 183, 449(2001).

    [29] E.D’Humières, S.Fritzler, E.Lefebvre, V.Malka. Numerical simulation of isotope production for positron emission tomography with laser-accelerated ions. J. Appl. Phys., 100, 113308(2006).

    [30] E. M.Campbell, T. E.Cowan, S. P.Hatchett, E. A.Henry, J.Johnson, M. H.Key, A. B.Langdon, B. F.Lasinski, A.MacKinnon, A.Offenberger, D. M.Pennington, M. D.Perry, T. W.Phillips, M.Roth, T. C.Sangster, M. S.Singh, R. A.Snavely, M. A.Stoyer, S. C.Wilks, K.Yasuike. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett., 85, 2945(2000).

    [31] T. E.Cowan, S.Hatchett, M. H.Key, A. B.Langdon, A.MacKinnon, D.Pennington, M.Roth, M.Singh, R. A.Snavely, S. C.Wilks. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas, 8, 542(2001).

    [32] M.Borghesi, S. V.Bulanov, T.Esirkepov, G.Mourou, T.Tajima. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett., 92, 175003(2004).

    [33] C.Bellei, R. G.Evans, S.Kar, A. P. L.Robinson, M.Zepf. Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys., 10, 013021(2008).

    [34] A.Macchi, F.Pegoraro, S.Veghini. Light sail acceleration reexamined. Phys. Rev. Lett., 103, 085003(2009).

    [35] M.Borghesi, M.Geissler, P.Gibbon, S.Kar, B.Qiao, M.Zepf. Dominance of radiation pressure in ion acceleration with linearly polarized pulses at intensities of 1021 W cm−2. Phys. Rev. Lett., 100, 115002(2012).

    [36] B. J.Albright, K. J.Bowers, J. C.Fernandez, K. A.Flippo, B. M.Hegelich, T. J. T.Kwan, L.Yin. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas, 14, 056706(2007).

    [37] B. J.Albright, K. J.Bowers, J. C.Fernandez, K. A.Flippo, D. C.Gautier, D.Habs, B. M.Hegelich, A.Henig, R. P.Johnson, D.Jung, D.Kiefer, S.Letzring, V. K.Liechtenstein, K.Markey, S. G.Rykovanov, J.Schreiber, T.Shimada, H.-C.Wu, L.Yin, M.Zepf. Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett., 103, 045002(2009).

    [38] S. V.Bulanov, T. Z.Esirkepov, M.Kando, T.Nakamura. High-energy ions from near-critical density plasmas via magnetic vortex acceleration. Phys. Rev. Lett., 105, 135002(2010).

    [39] J.Bin, S. S.Bulanov, E.Esarey, C. G. R.Geddes, Q.Ji, W. P.Leemans, J.Park, T.Schenkel, C. B.Schroeder, S.Steinke, J. L.Vay. Ion acceleration in laser generated megatesla magnetic vortex. Phys. Plasmas, 26, 103108(2019).

    [40] M.Babzien, A. E.Dangor, N. P.Dover, G. I.Dudnikova, P. S.Foster, J. S.Green, M.Ispiriyan, Z.Najmudin, D.Neely, C. A. J.Palmer, I.Pogorelsky, M. N.Polyanskiy, J.Schreiber, P.Shkolnikov, V.Yakimenko. Observation of impurity free monoenergetic proton beams from the interaction of a CO2 laser with a gaseous target. Phys. Plasmas, 18, 056705(2011).

    [41] F.Fiuza, R. A.Fonseca, C.Gong, D.Haberberger, C.Joshi, W. B.Mori, L.Silva, S.Tochitsky. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat. Phys., 8, 95(2012).

    [42] N.Cook, N. P.Dover, C.Maharjan, Z.Najmudin, I.Pogorelsky, M. N.Polyanskiy, P.Shkolnikov, O.Tresca. Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target. Phys. Rev. Lett., 115, 094802(2015).

    [43] M.Babzien, Y.Chen, N.Dover, O.Ettlinger, D.Gordon, M.Helle, Z.Najmudin, I.Pogorelsky, M.Polyanskiy, A.Ting. Laser acceleration of protons with an optically shaped, near-critical hydrogen gas target. AIP Conf. Proc, 1812, 090002(2017).

    [44] P.Antici, M.Bailly-Grandvaux, E.Boella, S. N.Chen, E.d’Humières, J.Fuchs, T.Gangolf, P.Loiseau, H.Pépin, G.Revet, J. J.Santos, A. M.Schroer, L. O.Silva, M.Starodubtsev, M.Vranic, O.Willi. Collimated protons accelerated from an overdense gas jet irradiated by a 1 μm wavelength high-intensity short-pulse laser. Sci. Rep., 7, 13505(2017).

    [45] T.Ceccotti, E.d’Humieres, J.Domange, M.Ehret, F.Hannachi, J. L.Henares, L.Lancia, J.-R.Marquès, P.Puyuelo-Valdes, X.Ribeyre, J. J.Santos, M.Tarisien, V.Tikhonchuk. Proton acceleration by collisionless shocks using a supersonic H2 gas-jet target and high-power infrared laser pulses. Phys. Plasmas, 26, 123109(2019).

    [46] F.Albert, L.Divol, R.Fedosejevs, F.Fiuza, D.Froula, M.Gauthier, S. H.Glenzer, D.Haberberger, C.Joshi, S.Kerr, N.Lemos, A.Link, A.Longman, L.Manzoor, A.Pak, P.Patel, B. B.Pollock, S.Tochitsky. Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using 1 μm lasers. Phys. Rev. Accel. Beams, 21, 103401(2018).

    [47] F.Fiuza, D. H.Froula, D.Haberberger, C.Joshi, N.Lemos, A.Link, A.Pak, S.Tochitsky. Laser-driven collisionless shock acceleration of ions from near-critical plasmas. Phys. Plasmas, 27, 083102(2020).

    [48] J.Bonvalet, E.d’Humières, J.Domange, F.Hannachi, L.Lancia, O.Larroche, P.Loiseau, J.-R.Marquès, P.Nicola?, P.Puyuelo-Valdes, L.Romagnani, J.Santos, M.Tarisien, V.Tikhonchuk. Over-critical sharp-gradient plasma slab produced by the collision of laser-induced blast-waves in a gas jet: Application to high-energy proton acceleration. Phys. Plasmas, 28, 023103(2021).

    [49] E.Atukpor, J.Bonvalet, E.d’Humières, J.Domange, P.Forestier-Colleoni, F.Hannachi, L.Lancia, P.Loiseau, J.-R.Marquès, P.Nicola?, D.Raffestin, M.Tarisien, V.Tikhonchuk. Laser-driven collisionless shock acceleration of protons from gas jets tailored by one or two nanosecond beams. Phys. Plasmas, 28, 113102(2021).

    [50] T.Ceccotti, M.Ehret, F.Gobet, F.Hannachi, J. L.Henares, L.Lancia, J.-R.Marquès, P.Puyuelo-Valdes, J. J.Santos, M.Tarisien, M.Versteegen. Development of gas jet targets for laser–plasma experiments at near-critical density. Rev. Sci. Instrum., 90, 063302(2019).

    [51] S. S.Bulanov, V. Y.Bychenkov, V.Chvykov, G.Kalinchenko, K.Krushelnick, D. W.Litzenberg, A.Maksimchuk, T.Matsuoka, A. G. R.Thomas, L.Willingale, V.Yanovsky. Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas, 17, 043105(2010).

    [52] J.-X.Liu, Y.-Y.Ma, J.-Z.Quan, F.-Q.Shao, X.-P.Wang, X.-H.Yang, T.-P.Yu, G.-B.Zhang, J.Zhao, Y.Zhao. High-flux positrons generation via two counter-propagating laser pulses irradiating near-critical-density plasmas. Phys. Plasmas, 25, 103106(2018).

    [53] A.Pukhov, Z. M.Sheng, I. C. E.Turcu, Y.Yin, T. P.Yu, X. L.Zhu. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas. Nat. Commun., 7, 13686(2016).

    [54] N. E.Andreev, N. G.Borisenko, B.Borm, P.Christ, F.Horst, D.Khaghani, V. G.Pimenov, L. P.Pugachev, T.Radon, O. N.Rosmej, G.Sklizkov, A.Sokolov, S.Zaehter, N.Zahn. Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV electrons and gamma-rays. New J. Phys., 21, 043044(2019).

    [55] V. Y.Bychenkov, S.-Y.Chen, A.Maksimchuk, G.Mourou, V. N.Novikov, G. S.Sarkisov, V. T.Tikhonchuk, D.Umstadter, R.Wagner. Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a he jet. Phys. Rev. E, 59, 7042(1999).

    [56] R.Allott, E. L.Clark, A. E.Dangor, C.Danson, K.Krushelnick, V.Malka, Z.Najmudin, D.Neely, M.Salvati, M. I. K.Santala, M.Tatarakis. Multi-MeV ion production from high-intensity laser interactions with underdense plasmas. Phys. Rev. Lett., 83, 737(1999).

    [57] E. L.Clark, R. J.Clarke, A. E.Dangor, R. G.Evans, S.Fritzler, A.Gopal, C.Hernandez-Gomez, K.Krushelnick, S. P. D.Mangles, W.Mori, Z.Najmudin, D.Neely, M.Tatarakis, M.Tzoufras, B.Walton, M. S.Wei. Ion acceleration by collisionless shocks in high-intensity-laser-underdense-plasma interaction. Phys. Rev. Lett., 93, 155003(2004).

    [58] W. L.Kruer, A. B.Langdon, M.Tabak, S. C.Wilks. Absorption of ultra-intense laser pulses. Phys. Rev. Lett., 69, 1383(1992).

    [59] D. J.Haberberger, C.Joshi, W. B.Mori, S. Y.Tochitsky, F.Tsung. CO2 Laser acceleration of forward directed MeV proton beams in a gas target at critical plasma density. J. Plasma Phys., 78, 373(2012).

    [60] L.Ceurvorst, T. W.Huang, M. F.Kasim, M. C.Levy, P. A.Norreys, N.Ratan, J.Sadler, R. H. H.Scott, L. O.Silva, M.Skramic, R. M. G. M.Trines, M.Vranic. Mitigating the hosing instability in relativistic laser–plasma interactions. New J. Phys., 18, 053023(2016).

    [61] R. Z.Sagdeev. Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys., 4, 23(1966).

    [62] S.Bernard, C.Esnault, P.Gauthier, A.Grisollet, P.Hoch, L.Jacquet, G.Kluth, S.Laffite, E.Lefebvre, S.Liberatore, I.Marmajou, P.-E.Masson-Laborde, O.Morice, J.-L.Willien. Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations. Nucl. Fusion, 59, 032010(2019).

    J.-R. Marquès, L. Lancia, P. Loiseau, P. Forestier-Colleoni, M. Tarisien, E. Atukpor, V. Bagnoud, C. Brabetz, F. Consoli, J. Domange, F. Hannachi, P. Nicolaï, M. Salvadori, B. Zielbauer. Collisionless shock acceleration of protons in a plasma slab produced in a gas jet by the collision of two laser-driven hydrodynamic shockwaves[J]. Matter and Radiation at Extremes, 2024, 9(2): 024001
    Download Citation