• Semiconductor Optoelectronics
  • Vol. 44, Issue 1, 92 (2023)
SHI Suheng1, YUE Lan2,*, MENG Fanxin3, CHEN Jiarong2, and REN Dasen2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2022110202 Cite this Article
    SHI Suheng, YUE Lan, MENG Fanxin, CHEN Jiarong, REN Dasen. Effect of Oxygen Partial Pressure on The Performance of Thin-film Transistors Devices with ZTO Channel Layer Prepared by RF Sputtering[J]. Semiconductor Optoelectronics, 2023, 44(1): 92 Copy Citation Text show less
    References

    [1] Kang D, Lim H, Kim C, et al. Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules[J]. Appl. Phys. Lett., 2007, 90(19): 192101.1-192101.3.

    [2] Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004, 432(25): 488-492.

    [3] Lahr O, Bar M S, Wenckstern H V, et al. All-oxide transparent thin-film transistors based on amorphous zinc tin oxide fabricated at room temperature: Approaching the thermodynamic limit of the subthreshold swing[J]. Adv. Electron. Mater., 2020, 6(10): 2000423.

    [4] Weng S, Chen R, Zhong W, et al. High-performance amorphous zinc-tin-oxide thin-film transistors with low tin concentration[J]. IEEE J. Electron Devices Society, 2019, 7: 632-637.

    [5] Hong S, Oh G, Kim E K. Electrical properties of thin film transistors with zinc tin oxide channel layer[J]. J. Korean Phys. Soc., 2017, 71(8): 500-505.

    [6] Oh S J, Han C J, Kim J W, et al. Improving the electrical properties of zinc tin oxide thin film transistors using atmospheric plasma treatment[J]. Electrochem. Solid State Lett., 2011, 14(9): H354-H357.

    [7] Pan W, Zhou X, Li Y, et al. High performance of ZnSnO thin-film transistors engineered by oxygen defect modulation[J]. Mat. Sci. Semicon. Proc., 2022, 151: 106998.

    [8] Wu C, Li X, Lu J, et al. Characterization of amorphous Si-Zn-Sn-O thin films and applications in thin-film transistors[J]. Appl. Phys. Lett., 2013, 103(8): 082109.1-082109.4.

    [9] Cho I H, Park H W, Chung K B, et al. Influence of lithium doping on the electrical properties and ageing effect of ZnSnO thin film transistors[J]. Semicond. Sci. Technol., 2018, 33(8): 085004.

    [10] Yang X, Jiang S, Li J, et al. Improvement of the long-term stability of ZnSnO thin film transistors by tungsten incorporation using a solution-process method[J]. RSC Advances, 2018, 8(37): 20990-20995.

    [11] Jeng J S. Improvement of transistor characteristics and stability for solution-processed ultra-thin high-valence niobium doped zinc-tin oxide thin film transistors[J]. J. Alloys and Compounds, 2016, 676: 86-90.

    [12] Peng C, Dong P, Li X. Improvement of solution-processed Zn-Sn-O active-layer thin film transistors by novel high valence Mo doping[J]. Nanotechnology, 2020, 32(2): 025207.

    [13] Zhang Y, Zhang H, Che B, et al. A new “ammonia bath” method for realizing nitrogen doping in ZnSnO transistors[J]. IEEE Electron Device Lett., 2020, 41(3): 389-392.

    [14] Alexis M, Herbert R S, Danick B. Yttrium zinc tin oxide high voltage thin film transistors[J]. Appl. Phys. Lett., 2018, 113(13): 132101.1-132101.5.

    [15] Wang C, Guo L, Lei M, et al. Effect of annealing temperature on electrical properties of ZTO thin-film transistors[J]. Nanomaterials, 2022, 12(14): 2397.

    [16] Kazuo S, Shuichi M, Yusuke K, et al. Effect of postannealing on properties of ZnO-SnO2 thin film transistors[J]. J. of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2018, 36(2): 02C105.1-02C105.5.

    [17] Zhang Q, Ruan C, Gong H, et al. Low-temperature and high-performance ZnSnO thin film transistor activated by lightwave irradiation[J]. Ceramics International, 2021, 47(14): 20413-20421.

    [18] Dai S, Wang T, Li R, et al. Preparation and electrical properties of N-doped ZnSnO thin film transistors[J]. J. Alloys and Compounds, 2018, 745: 256-261.

    [19] Zuo H, Zhang X, Yang Y, et al. The influence of oxygen partial pressure on the performance of back-channel-etched a-ZTO thin-film transistors[J]. SID Symposium Digest of Technical Papers, 2019, 50(s1): 216-219.

    [20] Hu M, Xu L, Zhang X, et al. In-situ Ar plasma treatment as a low thermal budget technique for high performance InGaSnO thin film transistors fabricated using magnetron sputtering[J]. Appl. Surf. Sci., 2022, 604: 154621.

    [21] Pons-Flores C A, Mejia I, Hernandez I, et al. High performance, low temperature processed Hf-In-Zn-O/HfO2 thin film transistors, using PMMA as etch-stop and passivation layer[J]. Microelectronic Engineering, 2019, 205: 1-5.

    [22] Shijeesh M R, Saritha A C, Jayaraj M K. Investigations on the reasons for degradation of zinc tin oxide thin film transistor on exposure to air[J]. Mat. Sci. Semicon. Proc., 2018, 74: 116-121.

    [23] Fernandes C, Santa A, Santos , et al. A sustainable approach to flexible electronics with zinc-tin oxide thin-film transistors[J]. Adv. Electron. Mater., 2018, 4(7): 1800032.

    [24] Zhang M, Lu K, Xu Z, et al. The investigation of indium-free amorphous Zn-Al-Sn-O thin film transistor prepared by magnetron sputtering[J]. Coatings, 2021, 11(5): 585.

    [25] Zhang Q, Xia G, Li L, et al. High-performance zinc-tin-oxide thin film transistors based on environment friendly solution process[J]. Current Appl. Phys., 2018, 19(2): 174-181.

    [26] Lim J H, Jeong H J, Oh K T, et al. Semiconductor behavior of Li doped ZnSnO thin film grown by mist-CVD and the associated device property[J]. J. Alloys Compounds, 2018, 762: 881-886.

    [27] Kumar A, Lee S Y. Effect of the oxygen dependent device parameters on the electrical properties of a-Si-Zn-Sn-O thin film transistors[J]. Microelectron. Eng., 2022, 261: 111794.

    [28] Pal N, Thakurta B, Chakraborty R, et al. Application of a microwave synthesized ultra-smooth a-C thin film for the reduction of dielectric/semiconductor interface trap states of an oxide thin film transistor[J]. J. Mater. Chem. C, 2022, 10: 14905-14914.

    [29] Pak K, Seong H, Choi J, et al. Synthesis of ultrathin, homogeneous copolymer dielectrics to control the threshold voltage of organic thin-film transistors[J]. Adv. Funct. Mater., 2016, 26(36): 6672.

    SHI Suheng, YUE Lan, MENG Fanxin, CHEN Jiarong, REN Dasen. Effect of Oxygen Partial Pressure on The Performance of Thin-film Transistors Devices with ZTO Channel Layer Prepared by RF Sputtering[J]. Semiconductor Optoelectronics, 2023, 44(1): 92
    Download Citation