[1] Nguyen Hong Ky, J D Ganiere, M Gaihanou, et al.. Self-interstitial mechanism for Zn diffusion-induced disording of GaAs/AlxGa1-xAs (x=0.1-1) multiple quantum well structures[J]. J Appl Phys, 1993, 73(8): 3769-3781.
[2] Zheng Kai, Lin Tao, Jiang Li, et al.. High power red-light GaInP/AlGaInP laser diodes with nonabsorption windows based on Zn diffusion-induced quantum well intermixing[J]. Chin Opt Lett, 2006, 4(1): 27-29.
[3] P J Poole, M Dabies, M Dion, et al.. The fabrication of a broad-spectrum light-emitting diode using high-energy ion implantation[J]. IEEE Photon Technol Lett, 1996, 8(9): 1145-1147.
[4] R Lai, J Pamulapati, P K Bhattacharya, et al.. Low-loss, single mode In0.53Ga0.47As/In0.52Al0.48As/InP optical waveguides fabricated by Zn-induced impurity-induced layer disordering[J]. J Appl Phys, 1991, 70(9): 5136-5137.
[5] G B Morrison, J W Raring, C S Wang. Electroabsorption modulator performance predicted from band-dege absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures[J]. Solid State Electron, 2007, 51(1): 38-47.
[6] Gregory B Tait, David B Ameen. Barrier-inhanced InGaAs/InAlAs photodetectors using quantum-well intermixing[J]. Solid-State Electron, 2004, 48(10-11): 1783-1790.
[7] H S Djie, T Mei, Plasma-induced quantum well intermixing for universal high-density photonic integration[J]. J Crys Growth, 2006, 288(1): 49-52.
[8] Y Wang, H S Djie, B S Ooi, et al.. Interdiffusion effect on quantum-well structures grown on GaSb substrate[J]. Thin Solid Films, 2007, 515(10): 4352-4355.
[9] D H Zhang, L Sun, S F Yoon. Doping effect on the intermixing in GaInAsP/InP multiple quantum well structures grown using all solid sources[J]. J Crys Growth, 2004, 268(3): 401-405.
[10] S Dhamodaran, G Devaraju, A P Pathak, et al.. Ion beam modification studies of InP based multi quantum wells[J]. Nucl Instrum Meth B, 2008, 266(8): 1810-1815.
[11] J Zhao, J Chen, Z C Feng, et al.. Band gap blue shift of InGaAs/InP multiple quantum wells by different dielectric film coating and annealing[J]. Thin Solid Films, 2006, 498(1-2): 179-182.
[12] J E Epler, R D Burnham, R L Thornton, et al.. Laser induced disordering of GaAs-AlGaAs superlattice and incorporation Si impurity[J]. Appl Phys Lett, 1986, 49(21): 1447-1449.
[13] D Nie, T Mei, H S Djie, et al.. Analysis of inductively coupled argon plasma-enhanced quantum-well intermixing process for multiple bandgap implementation[J]. J Crys Growth, 2006, 288(1): 32-35.
[14] Frank F C, Turnbull D. Mechanism of diffusion of copper in germanium[J]. Phys Rev, 1956, 104(3): 617-618.
[15] Gosele U, Morehead F. Diffusion of zinc in gallium arsenide: a new model[J]. J Appl Phys, 1981, 52(7): 4617-4619
[16] C J Frosch, L Derick. Surface protection and selective masking during diffusion in silicon[J]. J Electrochem Soc, 1957, 104(9): 547-552.
[17] Mclean C J, Marsh J H, Delarue R M, et al.. Layer selective disordering by photoabsorption induced thermal diffusion in InGaAs/InP based multiquantum well structures[J]. Electron Lett, 1992, 28(12): 1-117.
[18] Qiao Zhongliang, Tang Xiaohong, Lee EngKian Kenneth, et al.. Large energy band-gap tuning of 980 nm InGaAs/InGaAsP quantum well structurevia quantum well intermixing[J]. Solid State Electron, 2013, 79: 281-284.
[19] L Fu, R W v d Heijden, H H Tan, et al.. Study of intermixing in a GaAs/AlGaAs quantum-well structure using doped spin-on silica layers[J]. Appl Phys Lett, 2002, 80(7): 1171-1173.
[20] E V K Rao, A Hamoudi, Ph Krauz, et al.. New encapsulant source for III-V quantum well disordering[J]. Appl Phys Lett, 1995, 66(4): 472-474.
[21] Cusumano P, Ooi B S, HelmySaher, et al.. Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer[J]. J Appl Phys, 1997, 81(5): 2445-2447.
[22] Peng Jucun, Wu Boying, Chen Jie, et al.. Plasma-enhanced chemical vapor deposition SiO2 film after ion implantation induces quantum well intermixing[J]. Journal of Wuhan University of Technology, 2006, 21(4): 105-107.
[23] H J Chang, E Y Lin, K Y Chuang, et al.. Quantum well intermixing in InGaAs/InGaAlAs structures by using ICP-RIE and SiO2 sputtering[C]. International Conference on Indium Phosphide and Related Materials, 2007.
[24] Zhang Jing, Lu Yu, Wang Wei. Quantum well intermixing of InGaAsP QWs by impurity free vacancy diffusion using SiO2 encapsulation[J]. Chinese Journal of Semiconductors, 2003, 24(8): 785-788.
[25] V Hongpinyo, Y H Ding, C E Dimas, et al.. Intermixing of InGaAs/GaAs quantum well using multiple cycles annealing [C]. Singapore: IEEE Photonics Global, 2008.
[26] Hofstetter D, Zappe H P, Epler J E, et al.. Multiple wavelength Fabry-Perot lasers fabricated by vacancy-enhanced quantum well disordering[J]. Appl Phys Lett, 1995, 67(14): 1978-1980.
[27] Boon SiewOoi, K McIlvaney, Michael W Street, et al.. Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion[J]. IEEE Journal of Quantum Electronics, 1997, 33(10): 1784-1793.
[28] Zhou Lu, Bo Baoxue, Wang Yunhua, et al.. Study of 940 nm semiconductor lasers with non-absorb window structure fabricated by impurity-free vacancy disordering[J]. Chinese J Lasers, 2012, 39(8): 0802001.
[29] Yang Gedan, Wang Yongchen, Zhao Jie, et al.. A new technology of enhancing quantum well intermixing[J]. Photon Technology, 2004, 3(5): 132-155.
[30] Tao Lin, Haoqing Zhang, Hang Sun, et al.. Impurity free vacancy diffusion induced quantum well intermixing based on hafnium dioxide films[J]. Mater Sci Semicon Proc, 2015, 29: 150-154.
[31] B L Weiss, Y Chan, W C Shiu, et al.. The electro-optic properties of interdiffused InGaAs/InP quantum well structures [J]. J Appl Phys, 2000, 88(6): 3418-3425.
[32] H S Djie, C K F Ho, T Mei, et al.. Quantum well intermixing enhancement using Ge-doped sol-gel derived SiO2 encapsulant layer in InGaAs/InP laser structure[J]. Appl Phys Lett, 2005, 86(8): 081106.
[33] J Zhao, Z C Feng, Y C Wang, et al.. Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering[J]. Surf Coat Technol, 2006, 200(10): 3245-3249.
[34] Gordon B Morrison, Erik J Skogen, Chad S Wang, et al.. Photocurrent spectroscopy for quantum-well intermixed photonic integrated circuit design[J]. IEEE Photon Technol Lett, 2005, 17(7): 1414-1416.
[35] O Hulko, D A Thompson, B J Robinson, et al.. Quantum well intermixing of a quantum well structure grown on an InAsP metamorphic pseudo substrate on InP[J]. J Appl Phys, 2009, 105(7): 073507.
[36] Huang Xiaodong, Huang Dexiu, Liu Xuefeng. SiO2 encapsulant enhanced quantum well intermixing for InGaAsP superlattice[J]. Chinese Journal of Semiconductors, 2000, 21(11): 1107-1110.
[37] Han Dejun, Zhu Hongliang, J G Simmons, et al.. Silicon dioxide encapsulated anneal enhanced quantum well Intermixing for InP based laser material[J]. Chinese Journal of Semiconductors, 1999, 20(3): 231-236.
[38] D A May-Arrioja, N Bickel, M Torres-Cisneros, et al.. Intermixing properties of InP-Based MQW′ s[C]. IEEE/LEOS Summer Topical Meetings, 2008. 41.
[39] S c Du, L Fu, H H Tan, et al.. Study of intermixing mechanism in AlInGaAs/InGaAs quantum well[C]. Optoelectronic and Microelectronic Materials and Devices, 2010. 47-48.
[40] Ch Heyn, A Schramm, T Kipp, et al.. Kinetic model of intermixing during self-assembled InAs quantum dot formation [J]. J Crys Growth, 2007, 301-302: 692-696.
[41] T C Hsu, T E Tzeng, E Y Lin, et al.. Blue-shift emission in InP-based quantum dots by SiO2 sputtering and rapid thermal annealing[J]. J Crys Growth, 2009, 311(7): 1787-1790.
[42] C K Chia, S J Chua, Y J Wang, et al.. Impurity free vacancy disordering of InAs/GaAs quantum dot and InAs/InGaAs dot-in-a-well structures[J]. Thin Solid Films, 2007, 515(7-8): 3927-3931.
[43] P Lever, H H Tan, C Jagadish. Impurity free vacancy disordering of InGaAs quantum dots[J]. J Appl Phys, 2004, 96(12): 7544-7548.
[44] I McKerracher, J Wong-Leung, G Jolley, et al.. Spectral tuning of InGaAs/GaAs quantum dot infrared photodetectors using selective-area intermixing[C]. Optoelectronic and Microelectronic Materials and Devices, 2010. 49-50.
[45] Ian McKerracher, Jenny Wong-Leung, Greg Jolley, et al.. Selective intermixing of InGaAs/GaAs quantum dot infrared photodetectors[J]. IEEE J Quantum Electron, 2011, 47(5): 577-590.
[48] B W Hakki, F R Nash. Catastrophic failure in GaAs double-heterostructure injection lasers[J]. J Appl Phys, 1974, 45(9): 3907-3912.
[50] Liu Bin, Liu Yuanyuan, Cui Bifeng. Long term aging and failure analysis for 980nm laser diodes[J]. Laser & Optoelectronics Progress, 2012, 49(9): 091404.
[51] Y Ueno, K Endo, H Fujii, et al.. Continuous-wave high-power (75 mW) operation of a transverse-mode stabilised window-structure 680 nm AlGaInP visible laser diode[J]. Electron Lett, 1990, 26(20): 1726-1728.
[52] S D McDougall, M L Lubber, O P Kowalski, et al.. GaAs/AlGaAs waveguide pin photodiodes with non-absorbing input facets fabricated by quantum well intermixing[J]. Electron Lett, 2000, 36(8): 749-750.
[54] Lu Zhou, Xin Gao, Liuyang Xu, et al.. InGaAs/GaAsP/GaInP quantum well lasers with window structure fabricated by impurity free vacancy disordering[J]. Solid State Electronics, 2013, 89: 81-84.
[55] E Herbert Li, Advances in intermixed quantum well devices[C]. Electron Devices Meeting, 1998. 60-65.
[56] Chunling Liu, Xueyi Hou, Yanping Yao. The principle experiment of AlN used as a non-absorbing window material of LDs[J]. Advanced Material Research, 2012, 510: 446-450.
[57] Zhang Can, Zhu Hongliang, Liang Song, et al.. Electroabsorption modulated DFB lasers fabricated by IFVD-QWI technology[J]. Journal of Optoelectronics·Laser, 2013, 24(8): 1451-1455.
[58] Zhang Jing, Li Baoxia, Zhao Lingjuan, et al.. A wavelength tunable DBR laser integrated with an electro-absorption modulator by a combined method of SAG and QWI[J]. Chinese Journal of Semiconductors, 2005, 26(11): 2053-2057.
[59] Chad S Wang, Yu-Chia Chang, Uppili Krishnamachari, et al.. Short-cavity 980 nm DBR lasers with quantum well intermixed integrated high-speed EA modulators[J]. IEEE J Sel Top Quant, 2007, 13(5): 1151-1156.
[60] Daniel Hofstetter, Bernd Maisenholder, Hans P Zappe. Quantum-well intermixing for fabrication of lasers and photonic integrated circuits[J]. IEEE J Sel Top Quant, 1998, 4(4): 794-802.
[61] Yuta Sugawara, Tomoyuki Miyamoto. Quantum Structure Intermixing for Small Vertical-Cavity Surface-Emitting Laser [OL]. http://ieeexplore. ieee.org/stamp/stamp.jsp arnumber=4634520.[2015-1-23].
[62] C L Walker, A C Bryce, J H Marsh. High brightness single-mode ridge laser utilizing buried heterostructure defined by quantum-well intermixing[J]. IEEE Photon Technol Lett, 2002, 14(10): 1391-1393.
[63] F Robert, A C Bryce, J H Marsh, et al.. Passive mode locking of InAlGaAs 1.3-μm strained quantum wells extended cavity laser fabricated by quantum well intermixing[J]. IEEE Photon Technol Lett, 2004, 16(2): 374-376.
[64] Lu Yu, Zhang Jing, Wang Wei, et al.. Wavelength tuning in the two-section distributed bragg reflector laser fabricated by quantum-well intermixing[J]. Chinese Journal of Semiconductors, 2003, 24(9): 903-906.
[65] H Y Wong, M Sorel, A C Bryce, et al.. Monolithically integrated InGaAs-AlGaInAs Mach-Zehnder interferometer optical switch using quantum-well intermixing[J]. IEEE Photon Technol Lett, 2005, 17(4): 783-785.
[66] Jongbum Nah, Patrick LiKamWa. Quantum wells intermixing in InGaAsP/InGaAsP laser structure for photonic integrated circuits[C]. Quantum Electronics and Laser Science Conference, 2005. 1257.