[1] C. Blanpain, Skin regeneration and repair. Nature 464, 686–687 (2010).
[2] M. Takeo, W. Lee, M. Ito, Wound healing and skin regeneration. Cold Spring Harb. Perspect. Med. 5, a023267 (2015).
[3] P. Martin, Wound healing: aiming for perfect skin regeneration. Science 276, 75–81 (1997).
[4] H.N. Wilkinson, M.J. Hardman, Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 10, 200223 (2020).
[5] T.J. Koh, L.A. DiPietro, Inflammation and wound healing: the role of the macrophage. Expert Rev. Mol. Med. 13, e23 (2011).
[6] H. Sorg, D.J. Tilkorn, S. Hager, J. Hauser, U. Mirastschijski, Skin wound healing: an update on the current knowledge and concepts. Eur. Surg. Res. 58, 81–94 (2017).
[7] L.E. Tracy, R.A. Minasian, E.J. Caterson, Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care 5, 119–136 (2016).
[8] N.X. Landén, D. Li, M. Ståhle, Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 73, 3861–3885 (2016).
[9] J. Wang, Y. Zhou, H. Zhang, L. Hu, J. Liu et al., Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct. Target. Ther. 8, 138 (2023).
[10] A.Q. Khan, M.V. Agha, K.S.A.M. Sheikhan, S.M. Younis, M.A. Tamimi et al., Targeting deregulated oxidative stress in skin inflammatory diseases: an update on clinical importance. Biomed. Pharmacother. 154, 113601 (2022).
[11] D. Chouhan, N. Dey, N. Bhardwaj, B.B. Mandal, Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials 216, 119267 (2019).
[12] S.G. Priya, H. Jungvid, A. Kumar, Skin tissue engineering for tissue repair and regeneration. Tissue Eng. Part B Rev. 14, 105–118 (2008).
[13] J. Chen, Y. Fan, G. Dong, H. Zhou, R. Du et al., Designing biomimetic scaffolds for skin tissue engineering. Biomater. Sci. 11, 3051–3076 (2023).
[14] C. Yang, C. Yang, Y. Chen, J. Liu, Z. Liu et al., The trends in wound management: sensing, therapeutic treatment, and “theranostics.” J. Sci. Adv. Mater. Devices 8, 100619 (2023).
[15] G. Kaur, G. Narayanan, D. Garg, A. Sachdev, I. Matai, Biomaterials-based regenerative strategies for skin tissue wound healing. ACS Appl. Bio Mater. 5, 2069–2106 (2022).
[16] M. Rahmati, J.J. Blaker, S.P. Lyngstadaas, J.F. Mano, H.J. Haugen, Designing multigradient biomaterials for skin regeneration. Mater. Today Adv. 5, 100051 (2020).
[17] F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, K. Schenke-Layland, Skin tissue engineering—In vivo and in vitro applications. Adv. Drug Deliv. Rev. 63, 352–366 (2011).
[18] Y. Ikada, Challenges in tissue engineering. J. R. Soc. Interface. 3, 589–601 (2006).
[19] A. Sinha, F.Z. Simnani, D. Singh, A. Nandi, A. Choudhury et al., The translational paradigm of nanobiomaterials: biological chemistry to modern applications. Mater. Today Bio 17, 100463 (2022).
[20] Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019).
[21] H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013).
[22] M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52, 2190–2200 (2019).
[23] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).
[24] H. Sun, Y. Zhou, J. Ren, X. Qu, Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew. Chem. Int. Ed. 57, 9224–9237 (2018).
[25] Q. Liu, A. Zhang, R. Wang, Q. Zhang, D. Cui, A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 13, 154 (2021).
[26] Y. Ai, Z.-N. Hu, X. Liang, H.-B. Sun, H. Xin et al., Recent advances in nanozymes: from matters to bioapplications. Adv. Funct. Mater. 32, 2110432 (2022).
[27] O. Bayaraa, K. Dashnyam, R.K. Singh, N. Mandakhbayar, J.H. Lee et al., Nanoceria-GO-intercalated multicellular spheroids revascularize and salvage critical ischemic limbs through anti-apoptotic and pro-angiogenic functions. Biomaterials 292, 121914 (2023).
[28] Patel, K.D., Patel, A.K., Kurian, A.G., Singh, R.K., Kim, H.-W.. Tuning the properties of inorganic nanomaterials for theranostic applications in infectious diseases: Carbon nanotubes, quantum dots, graphene, and mesoporous carbon nanoparticles. Nanotheranostics Treatment Diagn Infectious Dis, pp. 319–352 (2022).
[29] C.-S. Lee, R.K. Singh, H.S. Hwang, N.-H. Lee, A.G. Kurian et al., Materials-based nanotherapeutics for injured and diseased bone. Prog. Mater. Sci. 135, 101087 (2023).
[30] W. Yang, X. Yang, L. Zhu, H. Chu, X. Li et al., Nanozymes: activity origin, catalytic mechanism, and biological application. Coord. Chem. Rev. 448, 214170 (2021).
[31] C. Cao, N. Yang, X. Wang, J. Shao, X. Song et al., Biomedicine meets nanozyme catalytic chemistry. Coord. Chem. Rev. 491, 215245 (2023).
[32] X. Mou, Q. Wu, Z. Zhang, Y. Liu, J. Zhang et al., Nanozymes for regenerative medicine. Small. Methods 6, e2200997 (2022).
[33] Zhang, Y.S., Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).
[34] L. Qi, C. Zhang, B. Wang, J. Yin, S. Yan, Progress in hydrogels for skin wound repair. Macromol. Biosci. 22, e2100475 (2022).
[35] A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54, 3–12 (2002).
[36] F. Kong, N. Mehwish, X. Niu, M. Lin, X. Rong et al., Personalized hydrogels for individual health care: preparation, features, and applications in tissue engineering. Mater. Today Chem. 22, 100612 (2021).
[37] Khan, M.U.A., Aslam, M.A., Bin Abdullah, M.F., Hasan, A., Shah S.A. et al., Recent perspective of polymeric biomaterial in tissue engineering–a review. Mater. Today Chem. 34, 101818 (2023).
[38] H. Wang, K. Wan, X. Shi, Recent advances in nanozyme research. Adv. Mater. 31, e1805368 (2019).
[39] H. Wu, H. Liao, F. Li, J. Lee, P. Hu et al., Bioactive ROS-scavenging nanozymes for regenerative medicine: reestablishing the antioxidant firewall. Nano Sel. 1, 285–297 (2020).
[40] Q. Wang, Y. Zhang, Y. Ma, M. Wang, G. Pan, Nano-crosslinked dynamic hydrogels for biomedical applications. Mater. Today Bio 20, 100640 (2023).
[41] S. Wang, H. Zheng, L. Zhou, F. Cheng, Z. Liu et al., Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett. 20, 5149–5158 (2020).
[42] W. Li, Y. Bei, X. Pan, J. Zhu, Z. Zhang et al., Selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release for diabetic wound healing. Biomater. Res. 27, 49 (2023).
[43] Y. Zhao, S. Song, D. Wang, H. Liu, J. Zhang et al., Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat. Commun. 13, 6758 (2022).
[44] R. Baretta, V. Gabrielli, M. Frasconi, Nanozyme–cellulose hydrogel composites enabling cascade catalysis for the colorimetric detection of glucose. ACS Appl. Nano Mater. 5, 13845–13853 (2022).
[45] H. Wu, F. Li, W. Shao, J. Gao, D. Ling, Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Cent. Sci. 5, 477–485 (2019).
[46] J. Zhuang, X. Zhang, Q. Liu, M. Zhu, X. Huang, Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Theranostics 12, 6223–6241 (2022).
[47] Y. Ju, X. Liu, X. Ye, M. Dai, B. Fang et al., Nanozyme-based remodeling of disease microenvironments for disease prevention and treatment: a review. ACS Appl. Nano Mater. 6, 13792–13823 (2023).
[48] A.G. Kurian, R.K. Singh, K.D. Patel, J.H. Lee, H.W. Kim, Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact. Mater. 8, 267–295 (2021).
[49] Y.E. Kim, S.W. Choi, M.K. Kim, T.L. Nguyen, J. Kim, Therapeutic hydrogel patch to treat atopic dermatitis by regulating oxidative stress. Nano Lett. 22, 2038–2047 (2022).
[50] Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healing. Bioact. Mater. 9, 461–474 (2022).
[51] X. Jin, W. Zhang, J. Shan, J. He, H. Qian et al., Thermosensitive hydrogel loaded with nickel-copper bimetallic hollow nanospheres with SOD and CAT enzymatic-like activity promotes acute wound healing. ACS Appl. Mater. Interfaces 14, 50677–50691 (2022).
[52] X. Wang, H. Wang, S. Zhou, Progress and perspective on carbon-based nanozymes for peroxidase-like applications. J. Phys. Chem. Lett. 12, 11751–11760 (2021).
[53] L. Wang, F. Gao, A. Wang, X. Chen, H. Li et al., Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv. Mater. 32, e2005423 (2020).
[54] Y. Liang, X. Zhao, T. Hu, Y. Han, B. Guo, Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J. Colloid Interface Sci. 556, 514–528 (2019).
[55] H. He, Z. Fei, T. Guo, Y. Hou, D. Li et al., Bioadhesive injectable hydrogel with phenolic carbon quantum dot supported Pd single atom nanozymes as a localized immunomodulation niche for cancer catalytic immunotherapy. Biomaterials 280, 121272 (2022).
[56] Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Mussel-inspired adhesive bilayer hydrogels for bacteria-infected wound healing via NIR-enhanced nanozyme therapy. Colloids Surf. B 210, 112230 (2022).
[57] X. Wang, Q. Shi, Z. Zha, D. Zhu, L. Zheng et al., Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 6, 4389–4401 (2021).
[58] X. Wang, X. Sun, T. Bu, Q. Wang, P. Jia et al., In situ fabrication of metal-organic framework derived hybrid nanozymes for enhanced nanozyme-photothermal therapy of bacteria-infected wounds. Compos. B Eng. 229, 109465 (2022).
[59] A. Maleki, J. He, S. Bochani, V. Nosrati, M.-A. Shahbazi et al., Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 15, 18895–18930 (2021).
[60] Q. Han, J.W. Lau, T.C. Do, Z. Zhang, B. Xing, Near-infrared light brightens bacterial disinfection: recent progress and perspectives. ACS Appl. Bio Mater. 4, 3937–3961 (2021).
[61] Y. He, X. Chen, Y. Zhang, Y. Wang, M. Cui et al., Magnetoresponsive nanozyme: magnetic stimulation on the nanozyme activity of iron oxide nanoparticles. Sci. China Life Sci. 65, 184–192 (2022).
[62] Shamsabadi A., Haghighi, T., Carvalho, S., Frenette, L.C., Stevens, M.M.. The nanozyme revolution: Enhancing the performance of medical biosensing platforms. Adv. Mater., e2300184 (2023).
[63] K. Li, X. Yan, Y. Du, S. Chen, Y. You et al., Silk fibroin nanozyme hydrogel with self-supplied H2O2 for enhanced antibacterial therapy. ACS Appl. Nano Mater. 6, 9175–9185 (2023).
[64] Z.-Y. Liao, W.-W. Gao, N.-N. Shao, J.-M. Zuo, T. Wang et al., Iron phosphate nanozyme-hydrogel with multienzyme-like activity for efficient bacterial sterilization. ACS Appl. Mater. Interfaces 14, 18170–18181 (2022).
[65] Z. Jia, X. Lv, Y. Hou, K. Wang, F. Ren et al., Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics. Bioact. Mater. 6, 2676–2687 (2021).
[66] K. Haraguchi, Nanocomposite hydrogels. Curr. Opin. Solid State Mater. Sci. 11, 47–54 (2007).
[67] Z. Chen, S. Song, H. Zeng, Z. Ge, B. Liu et al., 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem. Eng. J. 471, 144649 (2023).
[68] I.M. El-Sherbiny, M.H. Yacoub, Hydrogel scaffolds for tissue engineering: progress and challenges. Glob. Cardiol. Sci. Pract. 2013, 316–342 (2013).
[69] X. Zhu, X. Mao, Z. Wang, C. Feng, G. Chen et al., Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Res. 10, 959–970 (2017).
[70] P. Dam, M. Celik, M. Ustun, S. Saha, C. Saha et al., Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv. 13, 21345–21364 (2023).
[71] D. Solanki, P. Vinchhi, M.M. Patel, Design considerations, formulation approaches, and strategic advances of hydrogel dressings for chronic wound management. ACS Omega 8, 8172–8189 (2023).
[72] Y.E. Kim, J. Kim, ROS-scavenging therapeutic hydrogels for modulation of the inflammatory response. ACS Appl. Mater. Interfaces 14(20), 23002–23021 (2021).
[73] S. Li, S. Dong, W. Xu, S. Tu, L. Yan et al., Antibacterial hydrogels. Adv. Sci. 5(5), 1700527 (2018).
[74] H. Zhao, J. Huang, Y. Li, X. Lv, H. Zhou et al., ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials 258, 120286 (2020).
[75] D. Chao, Q. Dong, Z. Yu, D. Qi, M. Li et al., Specific nanodrug for diabetic chronic wounds based on antioxidase-mimicking MOF-818 nanozymes. J. Am. Chem. Soc. 144, 23438–23447 (2022).
[76] A. Gupta, M. Kowalczuk, W. Heaselgrave, S.T. Britland, C. Martin et al., The production and application of hydrogels for wound management: a review. Eur. Polym. J. 111, 134–151 (2019).
[77] H. Cheng, Z. Shi, K. Yue, X. Huang, Y. Xu et al., Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater. 124, 219–232 (2021).
[78] Y. Yang, M. Li, G. Pan, J. Chen, B. Guo, Multiple stimuli-responsive nanozyme-based cryogels with controlled NO release as self-adaptive wound dressing for infected wound healing. Adv. Funct. Mater. 33, 2214089 (2023).
[79] E. Piantanida, G. Alonci, A. Bertucci, L. De Cola, Design of nanocomposite injectable hydrogels for minimally invasive surgery. Acc. Chem. Res. 52, 2101–2112 (2019).
[80] H. Bai, Z. Ding, J. Qian, M. Jiang, D. Yao, AuPt nanoparticle-based injectable hydrogel as cascade nanozyme for accelerating bacteria-infected wound healing. ACS Appl. Nano Mater. 6, 17531–17538 (2023).
[81] M.H. Norahan, S.C. Pedroza-González, M.G. Sánchez-Salazar, M.M. Álvarez, G. Trujillo de Santiago, Structural and biological engineering of 3D hydrogels for wound healing. Bioact. Mater. 24, 197–235 (2022).
[82] X. Xie, Y. Lei, Y. Li, M. Zhang, J. Sun et al., Dual-crosslinked bioadhesive hydrogel as NIR/pH stimulus-responsiveness platform for effectively accelerating wound healing. J. Colloid Interface Sci. 637, 20–32 (2023).
[83] Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Adaptive hydrogels based on nanozyme with dual-enhanced triple enzyme-like activities for wound disinfection and mimicking antioxidant defense system. Adv. Healthcare Mater. 11, e2101849 (2022).
[84] R. Pugliese, B. Beltrami, S. Regondi, C. Lunetta, Polymeric biomaterials for 3D printing in medicine: An overview. Ann. 3D Print. Med. 2, 100011 (2021).
[85] M. Alizadehgiashi, C.R. Nemr, M. Chekini, D. Pinto Ramos, N. Mittal et al., Multifunctional 3D-printed wound dressings. ACS Nano 15, 12375–12387 (2021).
[86] X. Ding, Y. Yu, W. Li, Y. Zhao, In situ 3D-bioprinting MoS2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter 6, 1000–1014 (2023).
[87] P. Pleguezuelos-Beltrán, P. Gálvez-Martín, D. Nieto-García, J.A. Marchal, E. López-Ruiz, Advances in spray products for skin regeneration. Bioact. Mater. 16, 187–203 (2022).
[88] L. Shang, Y. Yu, Y. Jiang, X. Liu, N. Sui et al., Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 17, 15962–15977 (2023).
[89] W. Zhang, X. Dai, X. Jin, M. Huang, J. Shan et al., Promotion of wound healing by a thermosensitive and sprayable hydrogel with nanozyme activity and anti-inflammatory properties. Smart Mater. Med. 4, 134–145 (2023).
[90] M. Xiao, Y. Lin, L. Mei, J. Liu, F. Wang, Ag/MoS2 nanozyme hydrogel dressing with adhesion and self-healing properties for antibacterial applications. ACS Appl. Nano Mater. 6, 14563–14573 (2023).
[91] A.G. Kurian, R.K. Singh, J.H. Lee, H.W. Kim, Surface-engineered hybrid gelatin methacryloyl with nanoceria as reactive oxygen species responsive matrixes for bone therapeutics. ACS Appl. Bio Mater. 5, 1130–1138 (2022).
[92] R.K. Singh, D.S. Yoon, N. Mandakhbayar, C. Li, A.G. Kurian et al., Diabetic bone regeneration with nanoceria-tailored scaffolds by recapitulating cellular microenvironment: activating integrin/TGF-β co-signaling of MSCs while relieving oxidative stress. Biomaterials 288, 121732 (2022).
[93] A.G. Kurian, N. Mandakhbayar, R.K. Singh, J.H. Lee, G. Jin et al., Multifunctional dendrimer@nanoceria engineered GelMA hydrogel accelerates bone regeneration through orchestrated cellular responses. Mater. Today Bio 20, 100664 (2023).
[94] M. Zandieh, J. Liu, Nanozymes: Definition, activity, and mechanisms. Adv. Mater., e2211041 (2023).
[95] Z. Wang, R. Zhang, X. Yan, K. Fan, Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Mater. Today 41, 81–119 (2020).
[96] A.M. Villalba-Rodríguez, L.Y. Martínez-Zamudio, S.A.H. Martínez, J.A. Rodríguez-Hernández, E.M. Melchor-Martínez et al., Nanomaterial constructs for catalytic applications in biomedicine: nanobiocatalysts and nanozymes. Top. Catal. 66, 707–722 (2023).
[97] R. Qiao, Y. Cong, M. Ovais, R. Cai, C. Chen et al., Performance modulation and analysis for catalytic biomedical nanomaterials in biological systems. Cell Rep. Phys. Sci. 4, 101453 (2023).
[98] L. Mei, S. Zhu, Y. Liu, W. Yin, Z. Gu et al., An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 418, 129431 (2021).
[99] M. Zhang, W. Tong, Stimuli-responsive nanozymes for biomedical applications. Biomater. Sci. 11, 5769–5780 (2023).
[100] D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan et al., Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 48, 3683–3704 (2019).
[101] R.G. Mahmudunnabi, F.Z. Farhana, N. Kashaninejad, S.H. Firoz, Y.-B. Shim et al., Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 145, 4398–4420 (2020).
[102] M. Chen, H. Zhou, X. Liu, T. Yuan, W. Wang et al., Single iron site nanozyme for ultrasensitive glucose detection. Small 16, e2002343 (2020).
[103] Y. Wang, X. Jia, S. An, W. Yin, J. Huang et al., Nanozyme-based regulation of cellular metabolism and their applications. Adv. Mater., 2301810 (2023).
[104] H. Wei, L. Gao, K. Fan, J. Liu, J. He et al., Nanozymes: a clear definition with fuzzy edges. Nano Today 40, 101269 (2021).
[105] P. Mishra, J. Lee, D. Kumar, R.O. Louro, N. Costa et al., Engineered nanoenzymes with multifunctional properties for next-generation biological and environmental applications. Adv. Funct. Mater. 32, 2108650 (2022).
[106] D. Karthiga, S. Choudhury, N. Chandrasekaran, A. Mukherjee, Effect of surface charge on peroxidase mimetic activity of gold nanorods (GNRs). Mater. Chem. Phys. 227, 242–249 (2019).
[107] J. Zhao, X. Cai, W. Gao, L. Zhang, D. Zou et al., Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl. Mater. Interfaces 10, 26108–26117 (2018).
[108] J. Sheng, Y. Wu, H. Ding, K. Feng, Y. Shen et al., Multienzyme-like nanozymes: Regulation, rational design, and application. Adv. Mater., 2211210 (2023).
[109] N.C. Veitch, Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65, 249–259 (2004).
[110] F. Attar, M.G. Shahpar, B. Rasti, M. Sharifi, A.A. Saboury et al., Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq. 278, 130–144 (2019).
[111] Z. Lyu, S. Ding, D. Du, K. Qiu, J. Liu et al., Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv. Drug Deliv. Rev. 185, 114269 (2022).
[112] S. Ding, J.A. Barr, Z. Lyu, F. Zhang, M. Wang et al., Effect of phosphorus modulation in iron single-atom catalysts for peroxidase mimicking. Adv. Mater., e2209633 (2023).
[113] L. Tonoyan, D. Montagner, R. Friel, V. O’Flaherty, Antimicrobials offered from nature: Peroxidase-catalyzed systems and their mimics. Biochem. Pharmacol. 182, 114281 (2020).
[114] S. Zhang, Z. Yang, J. Hao, F. Ding, Z. Li et al., Hollow nanosphere-doped bacterial cellulose and polypropylene wound dressings: Biomimetic nanocatalyst mediated antibacterial therapy. Chem. Eng. J. 432, 134309 (2022).
[115] X. Ren, L. Chang, Y. Hu, X. Zhao, S. Xu et al., Au@MOFs used as peroxidase-like catalytic nanozyme for bacterial infected wound healing through bacterial membranes disruption and protein leakage promotion. Mater. Des. 229, 111890 (2023).
[116] H. Aebi, Catalase. Methods of Enzymatic Analysis (1974), pp. 673–684.
[117] A. Nandi, L.J. Yan, C.K. Jana, N. Das, Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid. Med. Cell. Longev. 2019, 9613090 (2019).
[118] B.J. Day, Catalase and glutathione peroxidase mimics. Biochem. Pharmacol. 77, 285–296 (2009).
[119] J. Zhu, Q. Han, Q. Li, F. Wang, M. Dong et al., A multi-enzyme-like activity exhibiting mussel-inspired nanozyme hydrogel for bacteria-infected wound healing. Biomater. Sci. 11, 2711–2725 (2023).
[120] A.S. Sethulekshmi, A. Saritha, K. Joseph, A.S. Aprem, S.B. Sisupal, MoS2 based nanomaterials: advanced antibacterial agents for future. J. Control. Release 348, 158–185 (2022).
[121] W. Luo, C. Zhu, S. Su, D. Li, Y. He et al., Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4, 7451–7458 (2010).
[122] J. Li, W. Liu, X. Wu, X. Gao, Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48, 37–44 (2015).
[123] B. Zhang, Y. Lv, C. Yu, W. Zhang, S. Song et al., Au-Pt nanozyme-based multifunctional hydrogel dressing for diabetic wound healing. Biomater. Adv. 137, 212869 (2022).
[124] Y. Chong, Q. Liu, C. Ge, Advances in oxidase-mimicking nanozymes: classification, activity regulation and biomedical applications. Nano Today 37, 101076 (2021).
[125] Q. Wang, H. Wei, Z. Zhang, E. Wang, S. Dong, Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. Trac Trends Anal. Chem. 105, 218–224 (2018).
[126] J. Chen, S. Zhang, X. Chen, L. Wang, W. Yang, A self-assembled fmoc-diphenylalanine hydrogel-encapsulated Pt nanozyme as oxidase- and peroxidase-like breaking pH limitation for potential antimicrobial application. Chemistry 28, e202104247 (2022).
[127] Z. Zhou, X. Mei, K. Hu, M. Ma, Y. Zhang, Nanohybrid double network hydrogels based on a platinum nanozyme composite for antimicrobial and diabetic wound healing. ACS Appl. Mater. Interfaces 15, 17612–17626 (2023).
[128] Y. Zhang, X. Hu, J. Shang, W. Shao, L. Jin et al., Emerging nanozyme-based multimodal synergistic therapies in combating bacterial infections. Theranostics 12, 5995–6020 (2022).
[129] I. Fridovich, Superoxide dismutases. Annu. Rev. Biochem. 44, 147–159 (1975).
[130] H. Zhao, R. Zhang, X. Yan, K. Fan, Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J. Mater. Chem. B 9, 6939–6957 (2021).
[131] C. Xu, X. Qu, Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6, e90 (2014).
[132] V. Baldim, F. Bedioui, N. Mignet, I. Margaill, J.-F. Berret, The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 10, 6971–6980 (2018).
[133] Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Injectable hydrogel based on defect-rich multi-nanozymes for diabetic wound healing via an oxygen self-supplying cascade reaction. Small 18, e2200165 (2022).
[134] H. Zhang, X.F. Lu, Z.P. Wu, X.W.D. Lou, Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 6, 1288–1301 (2020).
[135] R. Tian, J. Xu, Q. Luo, C. Hou, J. Liu, Rational design and biological application of antioxidant nanozymes. Front. Chem. 8, 831 (2021).
[136] C. Korsvik, S. Patil, S. Seal, W.T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007(10), 1056–1058 (2007).
[137] N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, A redox modulatory Mn3 O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. 56, 14267–14271 (2017).
[138] S. Ghosh, P. Roy, N. Karmodak, E.D. Jemmis, G. Mugesh, Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew. Chem. Int. Ed. 57, 4510–4515 (2018).
[139] S.V. Somerville, Q. Li, J. Wordsworth, S. Jamali, M.R. Eskandarian et al., Approaches to improving the selectivity of nanozymes. Adv. Mater., e2211288 (2023).
[140] K. Fan, H. Wang, J. Xi, Q. Liu, X. Meng et al., Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 53, 424–427 (2017).
[141] D. Zhang, N. Shen, J. Zhang, J. Zhu, Y. Guo et al., A novel nanozyme based on selenopeptide-modified gold nanoparticles with a tunable glutathione peroxidase activity. RSC Adv. 10, 8685–8691 (2020).
[142] X. Liu, W. Wei, Q. Yuan, X. Zhang, N. Li et al., Apoferritin–CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem. Commun. 48, 3155–3157 (2012).
[143] C. Hao, A. Qu, L. Xu, M. Sun, H. Zhang et al., Chiral molecule-mediated porous CuxO nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 141, 1091–1099 (2019).
[144] W. Wu, L. Huang, E. Wang, S. Dong, Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 11, 9741–9756 (2020).
[145] R. Yan, S. Sun, J. Yang, W. Long, J. Wang et al., Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano 13, 11552–11560 (2019).
[146] D. Wang, H. Wu, S.Z.F. Phua, G. Yang, W.Q. Lim et al., Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 11, 357 (2020).
[147] X. Ren, D. Chen, Y. Wang, H. Li, Y. Zhang et al., Nanozymes-recent development and biomedical applications. J. Nanobiotechnology 20, 92 (2022).
[148] A. Li, Y. Chen, L. Zhang, Nanozymology: connecting biology and nanotechnology. Springer, Singapore (2020), pp. 367–391.
[149] X. Cai, L. Jiao, H. Yan, Y. Wu, W. Gu et al., Nanozyme-involved biomimetic cascade catalysis for biomedical applications. Mater. Today 44, 211–228 (2021).
[150] S. Maddheshiya, S. Nara, Recent trends in composite nanozymes and their pro-oxidative role in therapeutics. Front. Bioeng. Biotechnol. 10, 880214 (2022).
[151] J. Xi, G. Wei, L. An, Z. Xu, Z. Xu et al., Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 19, 7645–7654 (2019).
[152] Y. Huang, Z. Liu, C. Liu, E. Ju, Y. Zhang et al., Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem. Int. Ed. 55, 6646–6650 (2016).
[153] X.-Q. Zhang, S.-W. Gong, Y. Zhang, T. Yang, C.-Y. Wang et al., Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J. Mater. Chem. 20, 5110–5116 (2010).
[154] J. Zhuang, A.C. Midgley, Y. Wei, Q. Liu, D. Kong et al., Machine-learning-assisted nanozyme design: lessons from materials and engineered enzymes. Adv. Mater., e2210848 (2023).
[155] Y. Wei, J. Wu, Y. Wu, H. Liu, F. Meng et al., Prediction and design of nanozymes using explainable machine learning. Adv. Mater. 34, e2201736 (2022).
[156] C. Zhang, Y. Yu, S. Shi, M. Liang, D. Yang et al., Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Lett. 22, 8592–8600 (2022).
[157] S. Li, Z. Zhou, Z. Tie, B. Wang, M. Ye et al., Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 13, 827 (2022).
[158] C. Tu, H. Lu, T. Zhou, W. Zhang, L. Deng et al., Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 286, 121597 (2022).
[159] Z. Li, Y. Zhao, H. Huang, C. Zhang, H. Liu et al., A nanozyme-immobilized hydrogel with endogenous ROS-scavenging and oxygen generation abilities for significantly promoting oxidative diabetic wound healing. Adv. Healthcare Mater. 11, e2201524 (2022).
[160] X. Han, S. Chen, Z. Cai, Y. Zhu, W. Yi et al., A diagnostic and therapeutic hydrogel to promote vascularization via blood sugar reduction for wound healing (adv. funct. mater. 14/2023). Adv. Funct. Mater. 33, 2370085 (2023).
[161] W. Zhu, J. Mei, X. Zhang, J. Zhou, D. Xu et al., Photothermal nanozyme-based microneedle patch against refractory bacterial biofilm infection via iron-actuated Janus ion therapy. Adv. Mater. 34, e2207961 (2022).
[162] Y. Li, D. Wang, J. Wen, P. Yu, J. Liu et al., Chemically grafted nanozyme composite cryogels to enhance antibacterial and biocompatible performance for bioliquid regulation and adaptive bacteria trapping. ACS Nano 15, 19672–19683 (2021).
[163] S. Wang, Y. Zhang, F. Sun, K. Xi, Z. Sun et al., Catalase-like nanozymes combined with hydrogel to facilitate wound healing by improving the microenvironment of diabetic ulcers. Mater. Des. 225, 111557 (2023).
[164] M. Deng, M. Zhang, R. Huang, H. Li, W. Lv et al., Diabetes immunity-modulated multifunctional hydrogel with cascade enzyme catalytic activity for bacterial wound treatment. Biomaterials 289, 121790 (2022).
[165] Y. Sang, W. Li, H. Liu, L. Zhang, H. Wang et al., Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria. Adv. Funct. Mater. 29, 1900518 (2019).
[166] Y. Li, P. Yu, J. Wen, H. Sun, D. Wang et al., Nanozyme-based stretchable hydrogel of low hysteresis with antibacterial and antioxidant dual functions for closely fitting and wound healing in movable parts. Adv. Funct. Mater. 32, 2110720 (2022).
[167] Y. Lu, C. Jia, C. Gong, H. Wang, Q. Xiao et al., A hydrogel system containing molybdenum-based nanomaterials for wound healing. Nano Res. 16, 5368–5375 (2023).
[168] M. Tian, L. Zhou, C. Fan, L. Wang, X. Lin et al., Bimetal-organic framework/GOx-based hydrogel dressings with antibacterial and inflammatory modulation for wound healing. Acta Biomater. 158, 252–265 (2023).
[169] X. Wang, X. Sun, T. Bu, Q. Wang, H. Zhang et al., Construction of a photothermal hydrogel platform with two-dimensional PEG@zirconium-ferrocene MOF nanozymes for rapid tissue repair of bacteria-infected wounds. Acta Biomater. 135, 342–355 (2021).
[170] Y. Peng, D. He, X. Ge, Y. Lu, Y. Chai et al., Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact. Mater. 6, 3109–3124 (2021).
[171] D. Dong, Z. Cheng, T. Wang, X. Wu, C. Ding et al., Acid-degradable nanocomposite hydrogel and glucose oxidase combination for killing bacterial with photothermal augmented chemodynamic therapy. Int. J. Biol. Macromol. 234, 123745 (2023).
[172] X. Wang, Q. Song, B. Sun, W. Xu, S. Shi et al., Bacteria-targeting nanozyme with NIR-II photothermal enhanced catalytic effect for antibacterial therapy and promoting burn healing. Colloids Surf. A Physicochem. Eng. Aspects 674, 131902 (2023).
[173] X. Liu, Y. Gao, R. Chandrawati, L. Hosta-Rigau, Therapeutic applications of multifunctional nanozymes. Nanoscale 11, 21046–21060 (2019).
[174] Z. Wang, Z. Wang, W.W. Lu, W. Zhen, D. Yang et al., Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 9, e435 (2017).
[175] S.J. Buwalda, T. Vermonden, W.E. Hennink, Hydrogels for therapeutic delivery: current developments and future directions. Biomacromol 18, 316–330 (2017).
[176] Y. Feng, F. Chen, J.M. Rosenholm, L. Liu, H. Zhang, Efficient nanozyme engineering for antibacterial therapy. Mater. Futures 1, 023502 (2022).
[177] G. Storz, J.A. Imlay, Oxidative stress. Curr. Opin. Microbiol. 2, 188–194 (1999).
[178] M. Ghorbani, H. Derakhshankhah, S. Jafari, S. Salatin, M. Dehghanian et al., Nanozyme antioxidants as emerging alternatives for natural antioxidants: achievements and challenges in perspective. Nano Today 29, 100775 (2019).
[179] G. Wang, F. Yang, W. Zhou, N. Xiao, M. Luo et al., The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed. Pharmacother. 157, 114004 (2023).
[180] E. Proksch, J.M. Brandner, J.-M. Jensen, The skin: an indispensable barrier. Exp. Dermatol. 17, 1063–1072 (2008).
[181] L. Cañedo-Dorantes, M. Cañedo-Ayala, Skin acute wound healing: a comprehensive review. Int. J. Inflam. 2019, 3706315 (2019).
[182] G. Zhu, Q. Wang, S. Lu, Y. Niu, Hydrogen peroxide: a potential wound therapeutic target? Med. Princ. Pract. 26, 301–308 (2017).
[183] M. Pasparakis, I. Haase, F.O. Nestle, Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 14, 289–301 (2014).
[184] L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo et al., Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9, 7204–7218 (2017).
[185] D. Laveti, M. Kumar, R. Hemalatha, R. Sistla, V.G.M. Naidu et al., Anti-inflammatory treatments for chronic diseases: a review. Inflamm. Allergy Drug Targets 12, 349–361 (2013).
[186] W. Badri, K. Miladi, Q.A. Nazari, H. Greige-Gerges, H. Fessi et al., Encapsulation of NSAIDs for inflammation management: overview, progress, challenges and prospects. Int. J. Pharm. 515, 757–773 (2016).
[187] Y. Liu, Y. Cheng, H. Zhang, M. Zhou, Y. Yu et al., Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 6, eabb2695 (2020).
[188] Z. Tu, Y. Zhong, H. Hu, D. Shao, R. Haag et al., Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 7, 557–574 (2022).
[189] L. Su, Y. Jia, L. Fu, K. Guo, S. Xie, The emerging progress on wound dressings and their application in clinic wound management. Heliyon 9, e22520 (2023).
[190] S. Zhu, B. Zhao, M. Li, H. Wang, J. Zhu et al., Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing. Bioact. Mater. 26, 306–320 (2023).
[191] J.E. Park, A. Barbul, Understanding the role of immune regulation in wound healing. Am. J. Surg. 187, 11S-16S (2004).
[192] J. Larouche, S. Sheoran, K. Maruyama, M.M. Martino, Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Adv. Wound Care 7, 209–231 (2018).
[193] N. Fujiwara, K. Kobayashi, Macrophages in inflammation. Curr. Drug Target Inflamm. Allergy 4, 281–286 (2005).
[194] C.J. Ferrante, S.J. Leibovich, Regulation of macrophage polarization and wound healing. Adv. Wound Care 1, 10–16 (2012).
[195] D. Zhi, T. Yang, J. O’Hagan, S. Zhang, R.F. Donnelly, Photothermal therapy. J. Control. Release 325, 52–71 (2020).
[196] Y. Chen, Y. Gao, Y. Chen, L. Liu, A. Mo et al., Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J. Control. Release 328, 251–262 (2020).
[197] M. Liu, D. He, T. Yang, W. Liu, L. Mao et al., An efficient antimicrobial depot for infectious site-targeted chemo-photothermal therapy. J. Nanobiotechnology 16, 23 (2018).
[198] Z. Ahmadian, H. Gheybi, M. Adeli, Efficient wound healing by antibacterial property: advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J. Drug Deliv. Sci. Technol. 73, 103458 (2022).
[199] M.H. Kang, H.Y. Yu, G.-T. Kim, J.E. Lim, S. Jang et al., Near-infrared-emitting nanoparticles activate collagen synthesis via TGFβ signaling. Sci. Rep. 10, 13309 (2020).
[200] P. Li, B. Li, C. Wang, X. Zhao, Y. Zheng et al., In situ fabrication of co-coordinated TCPP-Cur donor-acceptor-type covalent organic framework-like photocatalytic hydrogel for rapid therapy of bacteria-infected wounds. Compos. Part B Eng. 252, 110506 (2023).
[201] Q. Tian, F. Xue, Y. Wang, Y. Cheng, L. An et al., Recent advances in enhanced chemodynamic therapy strategies. Nano Today 39, 101162 (2021).
[202] H. Zhu, J. Zheng, X.Y. Oh, C.Y. Chan, B.Q.L. Low et al., Nanoarchitecture-integrated hydrogel systems toward therapeutic applications. ACS Nano 17, 7953–7978 (2023).
[203] C. Dunnill, T. Patton, J. Brennan, J. Barrett, M. Dryden et al., Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 14, 89–96 (2017).
[204] C. Jia, Y. Guo, F.-G. Wu, Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances. Small 18, e2103868 (2022).
[205] M. Xu, F. Tan, W. Luo, Y. Jia, Y. Deng et al., In situ fabrication of silver peroxide hybrid ultrathin co-based metal-organic frameworks for enhanced chemodynamic antibacterial therapy. ACS Appl. Mater. Interfaces 15, 22985–22998 (2023).
[206] T. Wang, D. Dong, T. Chen, J. Zhu, S. Wang et al., Acidity-responsive cascade nanoreactor based on metal-nanozyme and glucose oxidase combination for starving and photothermal-enhanced chemodynamic antibacterial therapy. Chem. Eng. J. 446, 137172 (2022).
[207] Y. Zheng, W. Wang, Y. Gao, W. Wang, R. Zhang et al., Nanosonosensitizers-engineered injectable thermogel for augmented chemo-sonodynamic therapy of melanoma and infected wound healing. Mater. Today Bio 20, 100621 (2023).
[208] H. Huang, Y. Su, C. Wang, B. Lei, X. Song et al., Injectable tissue-adhesive hydrogel for photothermal/chemodynamic synergistic antibacterial and wound healing promotion. ACS Appl. Mater. Interfaces 15, 2714–2724 (2023).
[209] W. Zhu, Y.-Q. Liu, P. Liu, J. Cao, A.-G. Shen et al., Blood-glucose-depleting hydrogel dressing as an activatable photothermal/chemodynamic antibacterial agent for healing diabetic wounds. ACS Appl. Mater. Interfaces 15, 24162–24174 (2023).
[210] H. Sun, M. Sun, Y. You, J. Xie, X. Xu et al., Recent progress of intelligent antibacterial nanoplatforms for treating bacterial infection. Chem. Eng. J. 471, 144597 (2023).
[211] Y. Qi, S. Ren, J. Ye, Y. Tian, G. Wang et al., Infection microenvironment-activated core-shell nanoassemblies for photothermal/chemodynamic synergistic wound therapy and multimodal imaging. Acta Biomater. 143, 445–458 (2022).
[212] S. Suvarnapathaki, X. Wu, D. Lantigua, M.A. Nguyen, G. Camci-Unal, Breathing life into engineered tissues using oxygen-releasing biomaterials. NPG Asia Mater. 11, 65 (2019).
[213] V. Falanga, Wound healing and its impairment in the diabetic foot. Lancet 366, 1736–1743 (2005).
[214] H. Brem, M. Tomic-Canic, Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest. 117, 1219–1222 (2007).
[215] Z. Tahergorabi, M. Khazaei, Imbalance of angiogenesis in diabetic complications: the mechanisms. Int. J. Prev. Med. 3, 827–838 (2012).
[216] M.A. Weigelt, H.A. Lev-Tov, M. Tomic-Canic, W.D. Lee, R. Williams et al., Advanced wound diagnostics: toward transforming wound care into precision medicine. Adv. Wound Care 11, 330–359 (2022).
[217] J.R. Nakkala, Z. Li, W. Ahmad, K. Wang, C. Gao, Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomater. 123, 1–30 (2021).
[218] X. Huang, S. Zhang, Y. Tang, X. Zhang, Y. Bai et al., Advances in metal–organic framework-based nanozymes and their applications. Coord. Chem. Rev. 449, 214216 (2021).
[219] R. Edwards, K.G. Harding, Bacteria and wound healing. Curr. Opin. Infect. Dis. 17, 91–96 (2004).
[220] M.C. Robson, Wound infection. Surg. Clin. North Am. 77, 637–650 (1997).
[221] R.F. Pereira, P.J. Bártolo, Traditional therapies for skin wound healing. Adv. Wound Care 5, 208–229 (2016).
[222] D. Fan, X. Liu, Y. Ren, S. Bai, Y. Li et al., Functional insights to the development of bioactive material for combating bacterial infections. Front. Bioeng. Biotechnol. 11, 1186637 (2023).
[223] X. Zhang, M. Qin, M. Xu, F. Miao, C. Merzougui et al., The fabrication of antibacterial hydrogels for wound healing. Eur. Polym. J. 146, 110268 (2021).
[224] Á. Serrano-Aroca, A. Cano-Vicent, R. Sabater I Serra, M. El-Tanani, A. Aljabali et al., Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater. Today Bio 16, 100412 (2022).
[225] P.V. Baptista, M.P. McCusker, A. Carvalho, D.A. Ferreira, N.M. Mohan et al., Nano-strategies to fight multidrug resistant bacteria—“a battle of the titans.” Front. Microbiol. 9, 1441 (2018).
[226] C. Xu, O.U. Akakuru, X. Ma, J. Zheng, J. Zheng et al., Nanoparticle-based wound dressing: recent progress in the detection and therapy of bacterial infections. Bioconjug. Chem. 31, 1708–1723 (2020).
[227] J. Xu, R. Cai, Y. Zhang, X. Mu, Molybdenum disulfide-based materials with enzyme-like characteristics for biological applications. Colloids Surf. B 200, 111575 (2021).
[228] N. Bag, S. Bardhan, S. Roy, J. Roy, D. Mondal et al., Nanoparticle-mediated stimulus-responsive antibacterial therapy. Biomater. Sci. 11, 1994–2019 (2023).
[229] J. Casqueiro, J. Casqueiro, C. Alves, Infections in patients with diabetes mellitus: a review of pathogenesis. Indian J. Endocrinol. Metab. 16(Suppl 1), S27–S36 (2012).
[230] C. Cai, H. Zhu, Y. Chen, Y. Guo, Z. Yang et al., Mechanoactive nanocomposite hydrogel to accelerate wound repair in movable parts. ACS Nano 16, 20044–20056 (2022).
[231] J. Shan, X. Zhang, B. Kong, Y. Zhu, Z. Gu et al., Coordination polymer nanozymes-integrated colorimetric microneedle patches for intelligent wound infection management. Chem. Eng. J. 444, 136640 (2022).
[232] D.Y.M. Leung, M. Boguniewicz, M.D. Howell, I. Nomura, Q.A. Hamid, New insights into atopic dermatitis. J. Clin. Invest. 113, 651–657 (2004).
[233] V. Wang, J. Boguniewicz, M. Boguniewicz, P.Y. Ong, The infectious complications of atopic dermatitis. Ann. Allergy Asthma Immunol. 126, 3–12 (2021).
[234] L.F. Eichenfield, W.L. Tom, T.G. Berger, A. Krol, A.S. Paller et al., Guidelines of care for the management of atopic dermatitis: Section 2. Management and treatment of atopic dermatitis with topical therapies. J. Am. Acad. Dermatol. 71, 116–132 (2014).
[235] E.V. Ramos Campos, P.L.F. Proença, L. Doretto-Silva, V. Andrade-Oliveira, L.F. Fraceto et al., Trends in nanoformulations for atopic dermatitis treatment. Expert Opin. Drug Deliv. 17, 1615–1630 (2020).
[236] H. Ji, X.-K. Li, Oxidative stress in atopic dermatitis. Oxid. Med. Cell. Longev. 2016, 2721469 (2016).
[237] G. Damiani, R. Eggenhöffner, P.D.M. Pigatto, N.L. Bragazzi, Nanotechnology meets atopic dermatitis: Current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature. Bioact. Mater. 4, 380–386 (2019).
[238] Y. Jia, J. Hu, K. An, Q. Zhao, Y. Dang et al., Hydrogel dressing integrating FAK inhibition and ROS scavenging for mechano-chemical treatment of atopic dermatitis. Nat. Commun. 14, 2478 (2023).
[239] L. Qiu, C. Ouyang, W. Zhang, J. Liu, L. Yu et al., Zn-MOF hydrogel: regulation of ROS-mediated inflammatory microenvironment for treatment of atopic dermatitis. J. Nanobiotechnol 21, 163 (2023).
[240] J.H. Kim, A.J. Kolozsvary, K.A. Jenrow, S.L. Brown, Mechanisms of radiation-induced skin injury and implications for future clinical trials. Int. J. Radiat. Biol. 89, 311–318 (2013).
[241] J. Wei, L. Meng, X. Hou, C. Qu, B. Wang et al., Radiation-induced skin reactions: mechanism and treatment. Cancer Manag. Res. 11, 167–177 (2018).
[242] X. Yang, H. Ren, X. Guo, C. Hu, J. Fu, Radiation-induced skin injury: pathogenesis, treatment, and management. Aging 12, 23379–23393 (2020).
[243] K.R. Brown, E. Rzucidlo, Acute and chronic radiation injury. J. Vasc. Surg. 53, 15S-21S (2011).
[244] C.N. Coleman, H.B. Stone, J.E. Moulder, T.C. Pellmar, Modulation of radiation injury. Science 304, 693–694 (2004).
[245] D. Zhou, M. Du, H. Luo, F. Ran, X. Zhao et al., Multifunctional mesoporous silica-cerium oxide nanozymes facilitate miR129 delivery for high-quality healing of radiation-induced skin injury. J. Nanobiotechnol 20, 409 (2022).
[246] D. Schadendorf, A.C.J. van Akkooi, C. Berking, K.G. Griewank, R. Gutzmer et al., Melanoma. Lancet 392, 971–984 (2018).
[247] E. Erdei, S.M. Torres, A new understanding in the epidemiology of melanoma. Expert Rev. Anticancer Ther. 10, 1811–1823 (2010).
[248] S.Q. Wang, R. Setlow, M. Berwick, D. Polsky, A.A. Marghoob et al., Ultraviolet A and melanoma: a review. J. Am. Acad. Dermatol. 44, 837–846 (2001).
[249] D. Bei, J. Meng, B.-B C. Youan, Engineering nanomedicines for improved melanoma therapy. Progress and promises. Nanomedicine 5, 1385–1399 (2010).
[250] V. Gray-Schopfer, C. Wellbrock, R. Marais, Melanoma biology and new targeted therapy. Nature 445, 851–857 (2007).
[251] M. Marzi, M. Rostami Chijan, E. Zarenezhad, Hydrogels as promising therapeutic strategy for the treatment of skin cancer. J. Mol. Struct. 1262, 133014 (2022).
[252] Z. Wu, H. Zhuang, B. Ma, Y. Xiao, B. Koc et al., Manganese-doped calcium silicate nanowire composite hydrogels for melanoma treatment and wound healing. Research 2021, 9780943 (2021).
[253] E.I. Azzam, J.-P. Jay-Gerin, D. Pain, Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327, 48–60 (2012).
[254] P.A. Riley, Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65, 27–33 (1994).
[255] W. Zhao, M.E.C. Robbins, Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: Therapeutic implications. Curr. Med. Chem. 16, 130–143 (2009).
[256] M.I. Koukourakis, Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br. J. Radiol. 85, 313–330 (2012).
[257] B. Babu, S. Pawar, A. Mittal, E. Kolanthai, C.J. Neal et al., Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 15, e1896 (2023).
[258] J. Xie, M. Zhao, C. Wang, S. Zhu, W. Niu et al., External use of Nano-graphdiyne hydrogel for skin radioprotection via both physically shielding of Low-energy X-ray and chemically scavenging of Broad-spectrum free radicals. Chem. Eng. J. 430, 132866 (2022).
[259] J. Hao, M. Sun, D. Li, T. Zhang, J. Li et al., An IFI6-based hydrogel promotes the healing of radiation-induced skin injury through regulation of the HSF1 activity. J. Nanobiotechnology 20, 288 (2022).
[260] N.D. Evans, R.O. Oreffo, E. Healy, P.J. Thurner, Y.H. Man, Epithelial mechanobiology, skin wound healing, and the stem cell niche. J. Mech. Behav. Biomed. Mater. 28, 397–409 (2013).
[261] S.H. Kwon, J. Padmanabhan, G.C. Gurtner, Mechanobiology of skin diseases and wound healing. Mechanobiol Health Dis, pp. 415–448 (2018).
[262] F.H. Silver, L.M. Siperko, G.P. Seehra, Mechanobiology of force transduction in dermal tissue. Skin Res. Technol. 9, 3–23 (2003).
[263] Z. Wang, F. Qi, H. Luo, G. Xu, D. Wang, Inflammatory microenvironment of skin wounds. Front. Immunol. 13, 789274 (2022).
[264] M.G. Fernandes, L.P. da Silva, A.P. Marques, “Skin mechanobiology and biomechanics: From homeostasis to wound healing.” Advances in Biomechanics and Tissue Regeneration, (Elsevier, Amsterdam, 2019), pp. 343–360.
[265] R. Ogawa, C.-K. Hsu, Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration. J. Cell. Mol. Med. 17, 817–822 (2013).
[266] L.S. Malakou, A.N. Gargalionis, C. Piperi, E. Papadavid, A.G. Papavassiliou et al., Molecular mechanisms of mechanotransduction in psoriasis. Ann. Transl. Med. 6, 245 (2018).
[267] M.S. Shutova, W.-H. Boehncke, Mechanotransduction in skin inflammation. Cells 11, 2026 (2022).
[268] J.V. Small, The actin cytoskeleton. Electron Microsc. Rev. 1, 155–174 (1988).
[269] M.A. Wozniak, K. Modzelewska, L. Kwong, P.J. Keely, Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta 1692, 103–119 (2004).
[270] A. van der Flier, A. Sonnenberg, Function and interactions of integrins. Cell Tissue Res. 305, 285–298 (2001).
[271] V.W. Wong, K.C. Rustad, S. Akaishi, M. Sorkin, J.P. Glotzbach et al., Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat. Med. 18, 148–152 (2011).
[272] C.S. Nowell, P.D. Odermatt, L. Azzolin, S. Hohnel, E.F. Wagner et al., Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat. Cell Biol. 18, 168–180 (2016).
[273] J.M. Murphy, K. Jeong, D.L. Cioffi, P.M. Campbell, H. Jo et al., Focal adhesion kinase activity and localization is critical for TNF-α-induced nuclear factor-κB activation. Inflammation 44, 1130–1144 (2021).
[274] Y. Dai, Y. Ding, L. Li, Nanozymes for regulation of reactive oxygen species and disease therapy. Chin. Chem. Lett. 32, 2715–2728 (2021).
[275] F. Yanagawa, S. Sugiura, T. Kanamori, Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen. Ther. 3, 45–57 (2016).
[276] L. Pontiggia, I.A. Van Hengel, A. Klar, D. Rütsche, M. Nanni et al., Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform. J. Tissue Eng. 13, 20417314221088510 (2022).
[277] Y. Cai, S.Y. Chang, S.W. Gan, S. Ma, W.F. Lu et al., Nanocomposite bioinks for 3D bioprinting. Acta Biomater. 151, 45–69 (2022).
[278] R.F. Pereira, A. Sousa, C.C. Barrias, A. Bayat, P.L. Granja et al., Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanuf. Rev. 2, 1 (2017).
[279] T. Weng, W. Zhang, Y. Xia, P. Wu, M. Yang et al., 3D bioprinting for skin tissue engineering: Current status and perspectives. J. Tissue Eng. 12, 20417314211028576 (2021).
[280] P. Chang, S. Li, Q. Sun, K. Guo, H. Wang et al., Large full-thickness wounded skin regeneration using 3D-printed elastic scaffold with minimal functional unit of skin. J. Tissue Eng. 13, 20417314211063024 (2022).
[281] R. Augustine, Skin bioprinting: A novel approach for creating artificial skin from synthetic and natural building blocks. Prog. Biomater. 7, 77–92 (2018).
[282] A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A. 103, 2480–2487 (2006).
[283] L. Zhang, H. Wang, X. Qu, Biosystem-inspired engineering of nanozymes for biomedical applications. Adv. Mater., e2211147 (2023).
[284] Q. Wang, J. Jiang, L. Gao, Nanozyme-based medicine for enzymatic therapy: Progress and challenges. Biomed. Mater. 16, 042002 (2021).
[285] X. Huang, D. He, Z. Pan, G. Luo, J. Deng, Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater. Today Bio 11, 100124 (2021).
[286] N. Song, M. Scholtemeijer, K. Shah, Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential. Trends Pharmacol. Sci. 41, 653–664 (2020).
[287] G.F. Goya, A. Mayoral, E. Winkler, R.D. Zysler, C. Bagnato et al., Next generation of nanozymes: a perspective of the challenges to match biological performance. J. Appl. Phys. 131(3), 190903 (2022).
[288] X. Wang, X. Zhong, J. Li, Z. Liu, L. Cheng, Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 50, 8669–8742 (2021).
[289] S. Sindhwani, W.C.W. Chan, Nanotechnology for modern medicine: next step towards clinical translation. J. Intern. Med. 290, 486–498 (2021).
[290] X. Ding, Z. Zhao, Y. Zhang, M. Duan, C. Liu et al., Activity regulating strategies of nanozymes for biomedical applications. Small 19, e2207142 (2023).
[291] S. Correa, A.K. Grosskopf, H. Lopez Hernandez, D. Chan, A.C. Yu et al., Translational applications of hydrogels. Chem. Rev. 121, 11385–11457 (2021).
[292] M.A. Bhutkar, R.O. Sonawane. Translating nanomaterials from laboratory to clinic: Barriers ahead. In: Pardeshi, C.V. (eds) Nanomaterial-based drug delivery systems, (Springer, Cham, 2023), pp. 381–405.
[293] M. Ghorbani, Z. Izadi, S. Jafari, E. Casals, F. Rezaei et al., Preclinical studies conducted on nanozyme antioxidants: shortcomings and challenges based on US FDA regulations. Nanomedicine 16, 1133–1151 (2021).
[294] B. Liu, J. Liu, Surface modification of nanozymes. Nano Res. 10, 1125–1148 (2017).
[295] L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5, eaav5490 (2019).
[296] J. Pei, R. Zhao, X. Mu, J. Wang, C. Liu et al., Single-atom nanozymes for biological applications. Biomater. Sci. 8, 6428–6441 (2020).
[297] R. Kumari, D.S. Dkhar, S. Mahapatra, R. Kumar, P. Chandra, Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models. Microchem. J. 180, 107615 (2022).