• Advanced Photonics Nexus
  • Vol. 2, Issue 5, 056002 (2023)
Ximin Tian1, Yafeng Huang1, Junwei Xu1,*, Tao Jiang2..., Pei Ding1, Yaning Xu1, Shenglan Zhang1 and Zhi-Yuan Li3,*|Show fewer author(s)
Author Affiliations
  • 1Zhengzhou University of Aeronautics, School of Materials Science and Engineering, Zhengzhou, China
  • 2Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing, China
  • 3South China University of Technology, College of Physics and Optoelectronics, Guangzhou, China
  • show less
    DOI: 10.1117/1.APN.2.5.056002 Cite this Article Set citation alerts
    Ximin Tian, Yafeng Huang, Junwei Xu, Tao Jiang, Pei Ding, Yaning Xu, Shenglan Zhang, Zhi-Yuan Li, "Differentiated design strategies toward broadband achromatic and polarization-insensitive metalenses," Adv. Photon. Nexus 2, 056002 (2023) Copy Citation Text show less
    References

    [1] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [2] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [3] W. T. Chen et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 10, 355(2019).

    [4] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [5] M. Wang et al. Varifocal metalens using tunable and ultralow-loss dielectrics. Adv. Sci., 10, 2204899(2023).

    [6] H. Yafeng et al. Spin-multiplexing phase-driven varifocal metalenses for multidimensional beam splitting and binary switching. Europhys. Lett., 141, 55004(2023).

    [7] P. Georgi et al. Optical secret sharing with cascaded metasurface holography. Sci. Adv., 7, eabf9718(2021).

    [8] Q. Song et al. Vectorial metasurface holography. Appl. Phys. Rev., 9, 011311(2022).

    [9] I. Javed et al. Broad-band polarization-insensitive metasurface holography with a single-phase map. ACS Appl. Mater. Interfaces, 14, 36019-36026(2022).

    [10] R. Zhao, L. Huang, Y. Wang. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX, 2, 1-24(2020).

    [11] X. Tian et al. Broadband generation of polarization-immune cloaking via a hybrid phase-change metasurface. Photonics, 9, 56(2022).

    [12] X. Tian et al. Phase-change reconfigurable metasurface for broadband, wide-angle, continuously tunable and switchable cloaking. Opt. Express, 29, 5959-5971(2021).

    [13] W. Zhu et al. Polarization-multiplexed silicon metasurfaces for multi-channel visible light modulation. Adv. Funct. Mater., 32, 2200013(2022).

    [14] F. Yu et al. Reconfigurable metasurface with tunable and achromatic beam deflections. Opt. Mater. Express, 12, 49-58(2022).

    [15] X. Xie et al. All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation. Nanophotonics, 9, 3209-3215(2019).

    [16] F. Aieta et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342-1345(2015).

    [17] D. Lin et al. Photonic multitasking interleaved Si nanoantenna phased array. Nano Lett., 16, 7671-7676(2016).

    [18] M. Khorasaninejad et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819-1824(2017).

    [19] E. Arbabi et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 4, 625-632(2017).

    [20] S. Wang et al. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [21] Q. Cheng et al. Broadband achromatic metalens in terahertz regime. Sci. Bull., 64, 1525-1531(2019).

    [22] H. Zhou et al. Broadband achromatic metalens in the midinfrared range. Phys. Rev. Appl., 11, 024066(2019).

    [23] M. Liu et al. Broadband achromatic metalens for linearly polarized light from 450 to 800 nm. Appl. Opt., 60, 9525-9529(2021).

    [24] Z.-B. Fan et al. A broadband achromatic metalens array for integral imaging in the visible. Light: Sci. Appl., 8, 67(2019).

    [25] R. J. Lin et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227-231(2019).

    [26] H. Zhou et al. Design of an achromatic optical polarization-insensitive zoom metalens. Opt. Lett., 47, 1263-1266(2022).

    [27] P. Sun et al. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared. Chin. Opt. Lett., 20, 013601(2022).

    [28] Y. Wang et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun., 12, 5560(2021).

    [29] J. T. Heiden, M. S. Jang. Design framework for polarization-insensitive multifunctional achromatic metalenses. Nanophotonics, 11, 583-591(2022).

    [30] X. Zhang et al. Broadband polarization-independent achromatic metalenses with unintuitively-designed random-shaped metaatoms(2021).

    [31] T. Zhou et al. Spin-independent metalens for helicity–multiplexing of converged vortices and cylindrical vector beams. Opt. Lett., 45, 5941-5944(2020).

    [32] X. Zang et al. A multi-foci metalens with polarization-rotated focal points. Laser Photonics Rev., 13, 1900182(2019).

    [33] T. Zhou et al. Helicity multiplexed terahertz multi-foci metalens. Opt. Lett., 45, 463-466(2020).

    [34] M. V. Berry. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 34, 1401-1407(1987).

    [35] S. Pancharatnam, S. Pancharatnam. Generalized theory of interference, and its applications. Resonance, 18, 387-389(2013).

    [36] M. Y. Shalaginov et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun., 12, 1225(2021).

    [37] Y. Zhang et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun., 10, 4279(2019).

    [38] J. Xu et al. Ge2Sb2Se4Te1-based multifunctional metalenses for polarization-independent, switchable and dual-mode focusing in the mid-infrared region. Opt. Express, 29, 44227-44238(2021). https://doi.org/10.1364/OE.446148

    [39] Y. Liang et al. High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths. Nanomaterials, 8, 288(2018).

    [40] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [41] M. S. Carstensen et al. Holographic resonant laser printing of metasurfaces using plasmonic template. ACS Photonics, 5, 1665-1670(2018).

    [42] H.-H. Hsiao et al. Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Adv. Opt. Mater., 6, 1800031(2018).

    [43] A. Hassanfiroozi et al. Toroidal-assisted generalized Huygens’ sources for highly transmissive plasmonic metasurfaces. Laser Photonics Rev., 16, 2100525(2022).

    [44] H. Chung, O. D. Miller. High-NA achromatic metalenses by inverse design. Opt. Express, 28, 6945-6965(2020).

    [45] C.-H. Lin et al. Automatic inverse design of high-performance beam-steering metasurfaces via genetic-type tree optimization. Nano Lett., 21, 4981-4989(2021).

    Ximin Tian, Yafeng Huang, Junwei Xu, Tao Jiang, Pei Ding, Yaning Xu, Shenglan Zhang, Zhi-Yuan Li, "Differentiated design strategies toward broadband achromatic and polarization-insensitive metalenses," Adv. Photon. Nexus 2, 056002 (2023)
    Download Citation