• Laser & Optoelectronics Progress
  • Vol. 59, Issue 14, 1415011 (2022)
Lina Fu1, Jingwen Yang1, Yanling Li1, Zonghua Zhang1,*..., Nan Gao1, Zhaozong Meng1, Feng Gao2 and Xiangqian Jiang2|Show fewer author(s)
Author Affiliations
  • 1School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
  • 2Centre for Precision Technologies, University of Huddersfield, HuddersfieldHD1 3DH, UK
  • show less
    DOI: 10.3788/LOP202259.1415011 Cite this Article Set citation alerts
    Lina Fu, Jingwen Yang, Yanling Li, Zonghua Zhang, Nan Gao, Zhaozong Meng, Feng Gao, Xiangqian Jiang. Binary Fringe Defocused Projection Technology: A Review[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415011 Copy Citation Text show less
    References

    [1] Xu J, Zhang S. Status, challenges, and future perspectives of fringe projection profilometry[J]. Optics and Lasers in Engineering, 135, 106193(2020).

    [2] Wang Z Z. Review of real-time three-dimensional shape measurement techniques[J]. Measurement, 156, 107624(2020).

    [3] Wang Z Y, Du H, Park S et al. Three-dimensional shape measurement with a fast and accurate approach[J]. Applied Optics, 48, 1052-1061(2009).

    [4] Zhang S, Huang P S. High-resolution, real-time three-dimensional shape measurement[J]. Optical Engineering, 45, 123601(2006).

    [5] Zhang S, Huang P S. Novel method for structured light system calibration[J]. Optical Engineering, 45, 083601(2006).

    [6] Gorthi S S, Rastogi P. Fringe projection techniques: whither we are?[J]. Optics and Lasers in Engineering, 48, 133-140(2010).

    [7] Zhang S. High-speed 3D shape measurement with structured light methods: a review[J]. Optics and Lasers in Engineering, 106, 119-131(2018).

    [8] Reich C, Ritter R, Thesing J. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection[J]. Optical Engineering, 39, 224-231(2000).

    [9] Zhang Z H, Chang C X, Liu X H et al. Phase measuring deflectometry for obtaining 3D shape of specular surface: a review of the state-of-the-art[J]. Optical Engineering, 60, 020903(2021).

    [10] Wang Y M, Zhang Z H, Gao F et al. Three-dimensional measurement of discontinuous specular object based on feature matching[J]. Acta Optica Sinica, 41, 1612004(2021).

    [11] Shi Y Q, Chang C X, Liu X H et al. Infrared phase measuring deflectometry by using defocused binary fringe[J]. Optics Letters, 46, 3091-3094(2021).

    [12] Chang C X, Shi Y Q, Liu X H et al. Binary fringe pattern in infrared phase measuring deflectometry[C], 207-210(2021).

    [13] Petitgrand S, Yahiaoui R, Danaie K et al. 3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric microscope[J]. Optics and Lasers in Engineering, 36, 77-101(2001).

    [14] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 72, 156-160(1982).

    [15] Qian K M. Windowed Fourier transform for fringe pattern analysis[J]. Applied Optics, 43, 2695-2702(2004).

    [16] Su X Y, Chen W J. Fourier transform profilometry: a review[J]. Optics and Lasers in Engineering, 35, 263-284(2001).

    [17] Liu X R, Kofman J. Real-time 3D surface-shape measurement using background-modulated modified Fourier transform profilometry with geometry-constraint[J]. Optics and Lasers in Engineering, 115, 217-224(2019).

    [18] Guo W B, Zhang Q C, Wu Z J. Real-time three-dimensional imaging technique based on phase-shift fringe analysis: a review[J]. Laser & Optoelectronics Progress, 58, 0800001(2021).

    [19] Zuo C, Feng S J, Huang L et al. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 109, 23-59(2018).

    [20] Tay C J, Quan C G, Chen L J. Phase retrieval with a three-frame phase-shifting algorithm with an unknown phase shift[J]. Applied Optics, 44, 1401-1409(2005).

    [21] Sansoni G, Carocci M, Rodella R. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors[J]. Applied Optics, 38, 6565-6573(1999).

    [22] Huang P S, Zhang C P, Chiang F P. High-speed 3-D shape measurement based on digital fringe projection[J]. Optical Engineering, 42, 163-168(2003).

    [23] Zhang W Z, Chen Z B, Xia B F et al. Nonlinear effect of the structured light profilometry in the phase-shifting method and error correction[J]. Chinese Physics B, 23, 044212(2014).

    [24] Lü F, Xing S, Guo H W. Self-correction of projector nonlinearity in phase-shifting fringe projection profilometry[J]. Applied Optics, 56, 7204-7216(2017).

    [25] Zhang S, Huang P S. Phase error compensation for a 3-D shape measurement system based on the phase-shifting method[J]. Optical Engineering, 46, 063601(2007).

    [26] Zhang S, Yau S T. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector[J]. Applied Optics, 46, 36-43(2007).

    [27] Li B W, Wang Y J, Dai J F et al. Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques[J]. Optics and Lasers in Engineering, 54, 236-246(2014).

    [28] Su X Y, Zhou W S. Phase-measuring profilometry using defocused projection of the Ronchi grating[J]. Opto-Electronic Engineering, 20, 8-16(1993).

    [29] Su X Y, Zhou W S, von Bally G et al. Automated phase-measuring profilometry using defocused projection of a Ronchi grating[J]. Optics Communications, 94, 561-573(1992).

    [30] Lei S Y, Zhang S. Flexible 3-D shape measurement using projector defocusing[J]. Optics Letters, 34, 3080-3082(2009).

    [31] Zhao H, Chen W Y, Tan Y S. Phase-unwrapping algorithm for the measurement of three-dimensional object shapes[J]. Applied Optics, 33, 4497-4500(1994).

    [32] Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: two-dimensional phase unwrapping[J]. Radio Science, 23, 713-720(1988).

    [33] Huntley J M, Saldner H. Temporal phase-unwrapping algorithm for automated interferogram analysis[J]. Applied Optics, 32, 3047-3052(1993).

    [34] Hornbeck L J. Digital Light Processing for high-brightness high-resolution applications[J]. Proceedings of SPIE, 3013, 27-40(1997).

    [35] Hoefling R, Ahl E. ALP: universal DMD controller for metrology and testing[J]. Proceedings of SPIE, 5289, 322-329(2004).

    [36] Hornbeck L J. 128×128 deformable mirror device[J]. IEEE Transactions on Electron Devices, 30, 539-545(1983).

    [37] Pape D R, Hornbeck L J. Characteristics of the deformable mirror device for optical information processing[J]. Optical Engineering, 22, 226675(1983).

    [38] Dudley D, Duncan W M, Slaughter J. Emerging digital micromirror device (DMD) applications[J]. Proceedings of SPIE, 4985, 14-25(2003).

    [39] TI. DLP products[EB/OL]. https://www.ti.com/dlp-chip/getting-started.html

    [40] Bell T, Zhang S. Toward superfast three-dimensional optical metrology with digital micromirror device platforms[J]. Optical Engineering, 53, 112206(2014).

    [41] Lei S Y, Zhang S. Digital sinusoidal fringe pattern generation: defocusing binary patterns VS focusing sinusoidal patterns[J]. Optics and Lasers in Engineering, 48, 561-569(2010).

    [42] Zhang S, van der Weide D, Oliver J. Superfast phase-shifting method for 3-D shape measurement[J]. Optics Express, 18, 9684-9689(2010).

    [43] Chen B, Zhang S. High-quality 3D shape measurement using saturated fringe patterns[J]. Optics and Lasers in Engineering, 87, 83-89(2016).

    [44] Hyun J S, Li B W, Zhang S. High-speed high-accuracy three-dimensional shape measurement using digital binary defocusing method versus sinusoidal method[J]. Optics Engineering, 56, 074102(2017).

    [45] Li B W, Zhang S. Microscopic structured light 3D profilometry: binary defocusing technique vs. sinusoidal fringe projection[J]. Optics and Lasers in Engineering, 96, 117-123(2017).

    [46] Ekstrand L, Zhang S. Three-dimensional profilometry with nearly focused binary phase-shifting algorithms[J]. Optics Letters, 36, 4518-4520(2011).

    [47] Zhang S. Flexible 3D shape measurement using projector defocusing: extended measurement range[J]. Optics Letters, 35, 934-936(2010).

    [48] Sun J. Pulse-width modulation[M]. Vasca F, Iannelli L. Dynamics and control of switched electronic systems. Advances in industrial control, 25-61(2012).

    [49] Kelly J W, Strangas E G, Miller J M. Multiphase space vector pulse width modulation[J]. IEEE Transactions on Energy Conversion, 18, 259-264(2003).

    [50] Bruckner T, Holmes D G. Optimal pulse-width modulation for three-level inverters[J]. IEEE Transactions on Power Electronics, 20, 82-89(2005).

    [51] Zhou P, Zhu J P, Su X Y et al. Experimental study of temporal-spatial binary pattern projection for 3D shape acquisition[J]. Applied Optics, 56, 2995-3003(2017).

    [52] Ayubi G A, Martino J M D, Flores J L et al. Binary coded linear fringes for three-dimensional shape profiling[J]. Optical Engineering, 51, 103601(2012).

    [53] Ayubi G A, di Martino J M, Alonso J R et al. Color encoding of binary fringes for Gamma correction in 3-D profiling[J]. Optics Letters, 37, 1325-1327(2012).

    [54] Pan J H, Huang P S, Chiang F P. Color-coded binary fringe projection technique for 3-D shape measurement[J]. Optical Engineering, 44, 023606(2005).

    [55] Lu F, Wu C D, Yang J K. Three-dimensional shape measurement of complex surfaces based on optimized dithering fringe patterns[J]. Journal of the European Optical Society-Rapid Publications, 14, 26(2018).

    [56] Adler R L, Kitchens B P, Martens M et al. The mathematics of halftoning[J]. IBM Journal of Research and Development, 47, 5-15(2003).

    [57] Purgathofer W, Tobler R F, Geiler M. Forced random dithering: improved threshold matrices for ordered dithering[C], 1032-1035(1994).

    [58] Li Q, Li F, Shi G M et al. One-shot depth acquisition with a random binary pattern[J]. Applied Optics, 53, 7095-7102(2014).

    [59] Kite T D, Evans B L, Bovik A C. Modeling and quality assessment of halftoning by error diffusion[J]. IEEE Transactions on Image Processing, 9, 909-922(2000).

    [60] Konak A, Coit D W, Smith A E. Multi-objective optimization using genetic algorithms: a tutorial[J]. Reliability Engineering & System Safety, 91, 992-1007(2006).

    [61] Xian T, Su X Y. Area modulation grating for sinusoidal structure illumination on phase-measuring profilometry[J]. Applied Optics, 40, 1201-1206(2001).

    [62] Zhao H J, Diao X C, Jiang H Z et al. High-speed triangular pattern phase-shifting 3D measurement based on the motion blur method[J]. Optics Express, 25, 9171-9185(2017).

    [63] Zhao Z, Lai J S, Cho Y. Dual-mode double-carrier-based sinusoidal pulse width modulation inverter with adaptive smooth transition control between modes[J]. IEEE Transactions on Industrial Electronics, 60, 2094-2103(2013).

    [64] Colak I, Kabalci E. Developing a novel sinusoidal pulse width modulation (SPWM) technique to eliminate side band harmonics[J]. International Journal of Electrical Power & Energy Systems, 44, 861-871(2013).

    [65] Ayubi G A, Ayubi J A, di Martino J M et al. Pulse-width modulation in defocused three-dimensional fringe projection[J]. Optics Letters, 35, 3682-3684(2010).

    [66] Wang Y J, Zhang S. Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing[J]. Optics Letters, 35, 4121-4123(2010).

    [67] Agelidis V G, Balouktsis A, Balouktsis I. On applying a minimization technique to the harmonic elimination PWM control: the bipolar waveform[J]. IEEE Power Electronics Letters, 2, 41-44(2004).

    [68] Chiasson J N, Tolbert L M, McKenzie K J et al. A unified approach to solving the harmonic elimination equations in multilevel converters[J]. IEEE Transactions on Power Electronics, 19, 478-490(2004).

    [69] Chiasson J N, Tolbert L M, McKenzie K J et al. A complete solution to the harmonic elimination problem[J]. IEEE Transactions on Power Electronics, 19, 491-499(2004).

    [70] Wang Y J, Zhang S. Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing[J]. Applied Optics, 51, 861-872(2012).

    [71] Zuo C, Chen Q, Feng S J et al. Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing[J]. Applied Optics, 51, 4477-4490(2012).

    [72] Silva A, Flores J L, Muñoz A et al. Three-dimensional shape profiling by out-of-focus projection of colored pulse width modulation fringe patterns[J]. Applied Optics, 56, 5198-5203(2017).

    [73] Wang Y J, Jiang C F, Zhang S. Double-pattern triangular pulse width modulation technique for high-accuracy high-speed 3D shape measurement[J]. Optics Express, 25, 30177-30188(2017).

    [74] Ayubi G A, di Martino J M, Alonso J R et al. Three-dimensional profiling with binary fringes using phase-shifting interferometry algorithms[J]. Applied Optics, 50, 147-154(2011).

    [75] Flores J L, Torales G, Ferrari J A et al. Binary coded triangular fringes for 3-D surface-shape measurement[J]. Applied Optics, 52, 3576-3582(2013).

    [76] Zhu J P, Su X Y, You Z S et al. Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity[J]. Optical Engineering, 54, 054108(2015).

    [77] Da F P, Wang L Y, Hu L Y. Fringe projection profilometry based on complementary color-encoded fringe patterns[J]. Optics & Laser Technology, 44, 2332-2339(2012).

    [78] Schuchman L. Dither signals and their effect on quantization noise[J]. IEEE Transactions on Communication Technology, 12, 162-165(1964).

    [79] Chen Y T, Cao Y P, Yuan H et al. A stroboscopic online three-dimensional measurement for fast rotating object with binary dithered patterns[J]. Transactions of the Institute of Measurement and Control, 40, 2660-2668(2018).

    [80] Kundu P, Pal A K. Some novel methods of ordered dither[J]. Acta Graphica, 26, 5-10(2015).

    [81] Wang Y J, Zhang S. Three-dimensional shape measurement with binary dithered patterns[J]. Applied Optics, 51, 6631-6636(2012).

    [82] Dai J F, Zhang S. Phase-optimized dithering technique for high-quality 3D shape measurement[J]. Optics and Lasers in Engineering, 51, 790-795(2013).

    [83] Dai J F, Li B W, Zhang S. Intensity-optimized dithering technique for three-dimensional shape measurement with projector defocusing[J]. Optics and Lasers in Engineering, 53, 79-85(2014).

    [84] Sun J S, Zuo C, Feng S J et al. Improved intensity-optimized dithering technique for 3D shape measurement[J]. Optics and Lasers in Engineering, 66, 158-164(2015).

    [85] Dai J F, Zhang S. Optimizing binary dithering patterns to improve phase quality[J]. Proceedings of SPIE, 9276, 92760C(2014).

    [86] Dai J F, Li B W, Zhang S. Improve dithering technique for 3D shape measurement: phase vs intensity optimization[J]. Proceedings of SPIE, 8839, 883904(2013).

    [87] Xiao Y, Li Y F. High-quality binary fringe generation via joint optimization on intensity and phase[J]. Optics and Lasers in Engineering, 97, 19-26(2017).

    [88] Lu F, Wu C D, Yang J K. Optimized dithering technique for three-dimensional shape measurement with projector defocusing[J]. Optics Communications, 430, 246-255(2019).

    [89] Tian Z X, Chen W J, Su X Y. Method for improving sinusoidal quality of error diffusion binary encoded fringe used in phase measurement profilometry[J]. Optica Applicata, 46, 291-303(2016).

    [90] Evans B L, Monga V, Damera-Venkata N. Variations on error diffusion: retrospectives and future trends[J]. Proceedings of SPIE, 5008, 371-389(2003).

    [91] Jarvis J F, Judice C N, Ninke W H. A survey of techniques for the display of continuous tone pictures on bilevel displays[J]. Computer Graphics and Image Processing, 5, 13-40(1976).

    [92] Knox K T. Error diffusion: a theoretical view[J]. Proceedings of SPIE, 326-331(1913).

    [93] Floyd R W, Steinberg L. An adaptive algorithm for spatial gray scale[J]. Proceedings of the Society for Information Display, 17, 75-77(1975).

    [94] Dai J F, Li B W, Zhang S. High-quality fringe pattern generation using binary pattern optimization through symmetry and periodicity[J]. Optics and Lasers in Engineering, 52, 195-200(2014).

    [95] Singh Y K. Generalized error diffusion method for halftoning[C], 15402897(2015).

    [96] Ulichney R[M]. Digital halftoning(1987).

    [97] Lü J Z, Da F P, Zheng D L. Projector defocusing profilometry based on Sierra Lite dithering algorithm[J]. Acta Optica Sinica, 34, 0312004(2014).

    [98] Wang T, Lin B, Zhang W Z et al. High-accuracy three-dimensional measurement by improving the asymmetry of dithered patterns[J]. Journal of Physics: Conference Series, 1229, 012029(2019).

    [99] Zhou P, Cai N, Wang T et al. High-quality 3D shape measurement by kernel-optimized high sinusoidal similarity dither patterns[J]. Applied Optics, 59, 10645-10650(2020).

    [100] Alander J T, Mantere T J, Pyylampi T. Threshold matrix for digital halftoning by genetic algorithm optimization[J]. Proceedings of SPIE, 3522, 204-212(1998).

    [101] Zhu C H, Zhou P, Zhu J P et al. Stripe binary encoding method using genetic algorithms to optimize kernel parameters of error diffusion[J]. Acta Optica Sinica, 41, 2110002(2021).

    [102] Zhu J P, Zhu C H, Zhou P et al. An optimizing diffusion kernel-based binary encoding strategy with genetic algorithm for fringe projection profilometry[J]. IEEE Transactions on Instrumentation and Measurement, 71, 7003708(2022).

    [103] Lohry W, Zhang S. Genetic method to optimize binary dithering technique for high-quality fringe generation[J]. Optics Letters, 38, 540-542(2013).

    [104] Cai N, Chen Z B, Cao X Q et al. Optimized dithering technique in frequency domain for high-quality three-dimensional depth data acquisition[J]. Chinese Physics B, 28, 084202(2019).

    [105] Cai N, Chen Z B, Cao X Q et al. Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement[J]. Chinese Physics B, 28, 104210(2019).

    [106] Tang S M, Zhang X, Tu D W et al. Three-dimensional profilometry with mixed binary defocusing technique[J]. Optical Engineering, 55, 104106(2016).

    [107] Wang Y J, Laughner J I, Efimov I R et al. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique[J]. Optics Express, 21, 5822-5832(2013).

    [108] Hu H H, Gao J, Zhou H Y et al. A combined binary defocusing technique with multi-frequency phase error compensation in 3D shape measurement[J]. Optics and Lasers in Engineering, 124, 105806(2020).

    [109] Hyun J S, Zhang S. Superfast 3D absolute shape measurement using five binary patterns[J]. Optics and Lasers in Engineering, 90, 217-224(2017).

    [110] Li X X, Zhang W H. Reconstruction method for binary defocusing technique based on complementary decoding with dual projectors[J]. IEEE Access, 9, 29200-29206(2021).

    [111] Fu G K, Cao Y P, Wang Y P et al. Real-time three-dimensional shape measurement based on color binary fringe projection[J]. Optical Engineering, 58, 044102(2019).

    [112] Guan C, Hassebrook L G, Lau D L. Composite structured light pattern for three-dimensional video[J]. Optics Express, 11, 406-417(2003).

    [113] Yue H M, Su X Y, Liu Y Z. Fourier transform profilometry based on composite structured light pattern[J]. Optics & Laser Technology, 39, 1170-1175(2007).

    [114] Xu J, Gao B T, Han J H et al. Realtime 3D profile measurement by using the composite pattern based on the binary stripe pattern[J]. Optics & Laser Technology, 44, 587-593(2012).

    [115] Xu J, Xi N, Zhang C et al. Rapid 3D surface profile measurement of industrial parts using two-level structured light patterns[J]. Optics and Lasers in Engineering, 49, 907-914(2011).

    [116] Wang Y J, Suresh V, Li B W. Motion-induced error reduction for binary defocusing profilometry via additional temporal sampling[J]. Optics Express, 27, 23948-23958(2019).

    [117] Su X Y, Zhang Q C. Dynamic three-dimensional shape measurement based on fringe projection[C], 10950422(2009).

    [118] Fu G K, Cao Y P, Wang Y P et al. Dynamic phase measuring profilometry based on tricolor binary fringe encoding combined time-division multiplexing[J]. Applied Sciences, 9, 813(2019).

    [119] Yu Y, Da F P. Defocused projection model for phase-shifting profilometry with a large depth range[J]. Optics Express, 29, 23597-23610(2021).

    [120] Zhang J, Luo B, Su X et al. Depth range enhancement of binary defocusing technique based on multi-frequency phase merging[J]. Optics Express, 27, 36717-36730(2019).

    [121] Shang M H, Yu F H. Research on microscopic 3D measurement system based on focus variation[J]. Laser & Optoelectronics Progress, 58, 1600002(2021).

    [122] Hu Y, Chen Q, Feng S J et al. Real-time microscopic 3D shape measurement based on optimized pulse-width-modulation binary fringe projection[J]. Measurement Science and Technology, 28, 075010(2017).

    Lina Fu, Jingwen Yang, Yanling Li, Zonghua Zhang, Nan Gao, Zhaozong Meng, Feng Gao, Xiangqian Jiang. Binary Fringe Defocused Projection Technology: A Review[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415011
    Download Citation