• Journal of Inorganic Materials
  • Vol. 38, Issue 6, 589 (2023)
Zhuo YANG, Yong LU, Qing ZHAO, and Jun CHEN*
Author Affiliations
  • Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
  • show less
    DOI: 10.15541/jim20220331 Cite this Article
    Zhuo YANG, Yong LU, Qing ZHAO, Jun CHEN. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2023, 38(6): 589 Copy Citation Text show less
    Influencing factors of X-ray diffraction patterns
    1. Influencing factors of X-ray diffraction patterns
    Schemes of in situ X-ray diffraction[20-21]
    2. Schemes of in situ X-ray diffraction[20-21]
    Schematic diagram of the crystal structures of cathode materials[25⇓⇓-28]
    3. Schematic diagram of the crystal structures of cathode materials[25-28]
    Application of XRD Rietveld refinement in cathode materials for lithium-ion batteries
    4. Application of XRD Rietveld refinement in cathode materials for lithium-ion batteries
    Structural evolution during high temperature synthesis of LiNi0.8Co0.2O2 (© 2017, Wiley-VCH)[41]
    5. Structural evolution during high temperature synthesis of LiNi0.8Co0.2O2 (© 2017, Wiley-VCH)[41]
    Temperature-resolved XRD characterization of synthesis process of cathode material LiNi0.6Co0.2Mn0.2O2 (© 2021, Wiley-VCH)[43]
    6. Temperature-resolved XRD characterization of synthesis process of cathode material LiNi0.6Co0.2Mn0.2O2 (© 2021, Wiley-VCH)[43]
    In-situ XRD characterization of microwave (MW) hydrothermal synthesis of NCM111(© 2020, AAAS) [44]
    7. In-situ XRD characterization of microwave (MW) hydrothermal synthesis of NCM111(© 2020, AAAS) [44]
    In situ XRD characterization of Ni-rich cathode LiNi0.8Co0.1Mn0.1O2(NCM811) during charge-discharge (© 2015, ECS)[49]
    8. In situ XRD characterization of Ni-rich cathode LiNi0.8Co0.1Mn0.1O2(NCM811) during charge-discharge (© 2015, ECS)[49]
    In-situ XRD characterization of Li1.2Ni0.13Co0.13Mn0.54O2 during charge-discharge process (© 2021, Springer Nature)[54]
    9. In-situ XRD characterization of Li1.2Ni0.13Co0.13Mn0.54O2 during charge-discharge process (© 2021, Springer Nature)[54]
    In-situ XRD Rietveld refinement results of LiNi0.8Co0.1Mn0.1O2 cathode materials during charge and discharge process (© 2022, ECS)[57]
    10. In-situ XRD Rietveld refinement results of LiNi0.8Co0.1Mn0.1O2 cathode materials during charge and discharge process (© 2022, ECS)[57]
    XRD Rietveld refinement results of LiFePO4 before and after modification (© 2021, RSC)[63]
    11. XRD Rietveld refinement results of LiFePO4 before and after modification (© 2021, RSC)[63]
    XRD Rietveld refinement results of Li(Li0.2Ni0.2Mn0.6)O2 cathode materials (© 2022, Wiley-VCH)[66]
    12. XRD Rietveld refinement results of Li(Li0.2Ni0.2Mn0.6)O2 cathode materials (© 2022, Wiley-VCH)[66]
    Refined XRD patterns of multiphase materials
    13. Refined XRD patterns of multiphase materials
    Cathode materialCrystal structure Space group Cell parameter Atom siteTheoretical specific capacity/(mAh·g-1) Working voltage/V (vs. Li+/Li)
    LiFePO4OlivinePnmaabcLi4a1703.4
    Fe4c
    O4c/8d
    LiMn2O4SpinelFd-3ma=b=cLi8a1484
    Mn16d
    O32e
    LiCoO2LayerR-3ma=bcLi3a2743.9
    Co3b
    O6c
    LiNixCoy(Mn/Al)1-x-yO2LayerR-3ma=bcLi3a273-2853.8
    Ni/Co/Mn/Al3b
    O6c
    xLi2MnO3·(1-x)LiMO2(0<x<1, M=Ni, Co, Mn)LayerR-3m+C2/ma=bcLi2b/2c/4h273-3503.8
    Mn4g
    O4i/4j
    Table 1. Structures and properties of common cathode materials for lithium-ion batteries[24-28]
    SampleDoped atomic radius/nm Displace ion radius/nm Lattice constant/nm Lattice volume/nm3Interatomic distance/nm Reliabilityfactor
    LFPrFe = 0.172rFe2+ = 0.074a=1.031634b=0.600129c=0.4691390.29045Li-O1:0.21664Li-O2:0.20901Li-O3:0.21651Li-O:0.214050Rwp = 7.72%Rp =5.63%χ2 = 2.794
    LFMgPrMg = 0.172rMg2+ = 0.065a=1.031583 b=0.600035c=0.4690900.29036Li-O1:0.21712Li-O2:0.21041Li-O3:0.21665Li-O:0.214720Rwp = 9.32%Rp = 6.79%χ2 = 2.878
    LFAlPrAl = 0.182rAl3+ = 0.050a=1.032204 b=0.600358c=0.4690720.29068Li-O1:0.21670Li-O2:0.21001Li-O3:0.21747Li-O:0.214730Rwp = 9.14%Rp = 6.60%χ2 = 2.989
    LFNiPrNi = 0.162rNi2+ = 0.072a=1.031083 b=0.599820c=0.4689230.29001Li-O1:0.21734Li-O2:0.20863Li-O3:0.21586Li-O:0.213950Rwp = 8.26%Rp = 6.12%χ2= 2.929
    LFVPrV = 0.192rV3+ = 0.074a=1.032223 b=0.600494c=0.4694850.291Li-O1:0.21864Li-O2:0.21074Li-O3:0.21794Li-O:0.215770Rwp = 9.86%Rp = 7.15%χ2= 2.426
    Table 2. Structure refinement result of LiFePO4 and LiFe0.95M0.05PO4 (M=Mg2+, Ni2+, Al3+, V3+) (© 2010, EC)[62]
    Samplea/nm b/nm c/nm V/nm3
    LFP/C1.032290.600610.469410.29104
    LFP/C-YF-11.030540.599850.469030.28994
    LFP/C-YF-21.030820.599770.468740.28980
    LFP/C-YF-31.030690.599890.468920.28994
    Table 3. Cell parameters of LiFePO4 before and after modification by XRD refinement (© 2021, RSC)[63]
    AtomSitexyzOccupancyUiso
    Lia3a0001.0000.014(6)
    Coa3b000.500001.0000.023(8)
    Oa6c000.2300(6)1.0000.049(1)
    Lib3a0000.98(1)0.020(1)
    Mgb3a0000.01(9)0.020(1)
    Cob3b000.500000.99(7)0.001(2)
    Alb3b000.500000.002(0)0.001(2)
    Tib3b000.500000.001(0)0.001(2)
    Ob6c000.2476(3)1.0000.068(5)
    Table 4. XRD refinement result of Al, Ti, Mg co-doped LiCoO2 and bare LiCoO2 (© 2019, Wiley-VCH)[64]
    FormulaCalculatedExperimental
    a/nm b/nm c/nm V/nm3a/nm V/nm3
    Li8Mn16O320.8862050.8862050.8862050.695990--
    Li8Mn15AlO320.8267250.8267250.8267250.5676170.825070.561658
    Li8Mn14Al2O320.8314930.8314930.7990710.5524160.824660.560821
    Li8Mn13Al3O320.8143750.8263370.8205830.5517800.821100.553590
    Table 5. XRD structure refinement result of Al doped LiMn2O4 (© 2019, Elsevier Ltd.)[69]
    Zhuo YANG, Yong LU, Qing ZHAO, Jun CHEN. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2023, 38(6): 589
    Download Citation