• Nano-Micro Letters
  • Vol. 16, Issue 1, 085 (2024)
Shaohong Shi1,2, Yuheng Jiang1, Hao Ren1, Siwen Deng1..., Jianping Sun1, Fangchao Cheng1,*, Jingjing Jing2 and Yinghong Chen2,**|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, People’s Republic of China
  • 2State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01317-w Cite this Article
    Shaohong Shi, Yuheng Jiang, Hao Ren, Siwen Deng, Jianping Sun, Fangchao Cheng, Jingjing Jing, Yinghong Chen. 3D-Printed Carbon-Based Conformal Electromagnetic Interference Shielding Module for Integrated Electronics[J]. Nano-Micro Letters, 2024, 16(1): 085 Copy Citation Text show less
    References

    [1] Y. Xie, S. Liu, K. Huang, B. Chen, P. Shi et al., Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric. Adv. Mater. 34, e2202982 (2022).

    [2] H. Lv, Y. Yao, S. Li, G. Wu, B. Zhao et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 14, 1982 (2023).

    [3] D. Jiang, M. Lian, M. Xu, Q. Sun, B.B. Xu et al., Advances in triboelectric nanogenerator technology—applications in self-powered sensors, Internet of Things, biomedicine, and blue energy. Adv. Compos. Hybrid Mater. 6, 57 (2023).

    [4] S. Dang, O. Amin, B. Shihada, M.-S. Alouini, What should 6G be? Nat. Electron. 3, 20–29 (2020).

    [5] K. Zhang, L. Zheng, M.A. Aouraghe, F. Xu, Ultra-light-weight kevlar/polyimide 3D woven spacer multifunctional composites for high-gain microstrip antenna. Adv. Compos. Hybrid Mater. 5, 872–883 (2022).

    [6] J. Singh, Z. Din, Energy efficient data aggregation and density-based spatial clustering of applications with noise for activity monitoring in wireless sensor networks. Eng. Sci. 19, 144–153 (2022).

    [7] Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, e1908496 (2020).

    [8] Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3 C2 tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, e2211642 (2023).

    [9] D. Lan, Y. Wang, Y. Wang, X. Zhu, H. Li et al., Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023).

    [10] Y. Hao, Z. Leng, C. Yu, P. Xie, S. Meng et al., Ultra-lightweight hollow bowl-like carbon as microwave absorber owning broad band and low filler loading. Carbon 212, 118156 (2023).

    [11] P. Xie, Y. Liu, M. Feng, M. Niu, C. Liu et al., Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4, 173–185 (2021).

    [12] F. Li, N. Wu, H. Kimura, Y. Wang, B.B. Xu et al., Initiating binary metal oxides microcubes electrsomagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett. 15, 220 (2023).

    [13] Y. Cheng, X. Li, Y. Qin, Y. Fang, G. Liu et al., Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7, eabj1663 (2021).

    [14] J. Ruan, Z. Chang, H. Rong, T.S. Alomar, D. Zhu et al., High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213, 118208 (2023).

    [15] R. Zhu, Z. Li, G. Deng, Y. Yu, J. Shui et al., Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 92, 106700 (2022).

    [16] Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022).

    [17] Q.-M. He, J.-R. Tao, Y. Yang, D. Yang, K. Zhang et al., Effect surface micro-wrinkles and micro-cracks on microwave shielding performance of copper-coated carbon nanotubes/polydimethylsiloxane composites. Carbon 213, 118216 (2023).

    [18] X. Shen, J.-K. Kim, Building 3D architecture in 2D thin film for effective EMI shielding. Matter 1, 796–798 (2019).

    [19] W.-Y. Chen, X.-L. Shi, J. Zou, Z.-G. Chen, Thermoelectric coolers for on-chip thermal management: materials, design, and optimization. Mater. Sci. Eng. R. Rep. 151, 100700 (2022).

    [20] J. Liu, M.-Y. Yu, Z.-Z. Yu, V. Nicolosi, Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 66, 245–272 (2023).

    [21] I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Composites with carbon nanotubes and graphene: an outlook. Science 362, 547–553 (2018).

    [22] Y. Gao, D. Bao, M. Zhang, Y. Cui, F. Xu et al., Millefeuille-inspired thermal interface materials based on double self-assembly technique for efficient microelectronic cooling and electromagnetic interference shielding. Small 18, e2105567 (2022).

    [23] P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022).

    [24] Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021).

    [25] T. Wang, W.-W. Kong, W.-C. Yu, J.-F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021).

    [26] W. Kang, L. Zeng, S. Ling, C. Zhang, 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility. Adv. Energy Mater. 11, 2100020 (2021).

    [27] M. Aramfard, O. Kaynan, E. Hosseini, M. Zakertabrizi, L.M. Pérez et al., Aqueous dispersion of carbon nanomaterials with cellulose nanocrystals: an investigation of molecular interactions. Small 18, e2202216 (2022).

    [28] E. Erfanian, R. Moaref, R. Ajdary, K.C. Tam, O.J. Rojas et al., Electrochemically synthesized graphene/TEMPO-oxidized cellulose nanofibrils hydrogels: highly conductive green inks for 3D printing of robust structured EMI shielding aerogels. Carbon 210, 118037 (2023).

    [29] P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon Aerogel@Reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021).

    [30] C. Wang, H. Gao, D. Liang, S. Liu, H. Zhang et al., Effective fabrication of flexible nickel chains/acrylate composite pressure-sensitive adhesives with layered structure for tunable electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 2906–2920 (2022).

    [31] C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021).

    [32] L.-X. Liu, W. Chen, H.-B. Zhang, Q.-W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 1905197 (2019).

    [33] J. Xu, H. Chang, B. Zhao, R. Li, T. Cui et al., Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chem. Eng. J. 431, 133908 (2022).

    [34] H.-C. Kuo, C.-W. Kuo, C.-C. Wang, Effective low-frequency EMI conformal shielding for system-in-package (SiP) modules. Micro Opt. Tech. Lett. 65, 1892–1897 (2023).

    [35] J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34, 2106253 (2022).

    [36] R. Li, Q. Fu, X. Zou, Z. Zheng, W. Luo et al., Mn-Co-Ni-O thin films prepared by sputtering with alloy target. J. Adv. Ceram. 9, 64–71 (2020).

    [37] Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai et al., Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness. Small 14, e1704332 (2018).

    [38] F. Ning, Z. Chai, X. Dan, P. Liu, Q. Wen et al., Integrated gas diffusion electrode with high conductivity obtained by skin electroplating for high specific power density fuel cell. Small Methods 7, e2201256 (2023).

    [39] H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019).

    [40] F. Liu, Y. Gao, G. Wang, D. Wang, Y. Wang et al., Laser-induced graphene enabled additive manufacturing of multifunctional 3D architectures with freeform structures. Adv. Sci. 10, e2204990 (2023).

    [41] J. Liu, J. Garcia, L.M. Leahy, R. Song, D. Mullarkey et al., 3D printing of multifunctional conductive polymer composite hydrogels. Adv. Funct. Mater. 33, 2214196 (2023).

    [42] K.P.M. Lee, T. Baum, R. Shanks, F. Daver, Electromagnetic interference shielding of 3D-printed graphene–polyamide-6 composites with 3D-printed morphology. Addit. Manuf. 43, 102020 (2021).

    [43] Q. Lv, X. Tao, S. Shi, Y. Li, N. Chen, From materials to components: 3D-printed architected honeycombs toward high-performance and tunable electromagnetic interference shielding. Compos. Part B Eng. 230, 109500 (2022).

    [44] S. Shi, M. Dai, X. Tao, F. Wu, J. Sun et al., 3D printed polylactic acid/graphene nanocomposites with tailored multifunctionality towards superior thermal management and high-efficient electromagnetic interference shielding. Chem. Eng. J. 450, 138248 (2022).

    [45] P.R. Agrawal, R. Kumar, S. Teotia, S. Kumari, D.P. Mondal et al., Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Compos. Part B Eng. 160, 131–139 (2019).

    [46] C. Fu, Z. Sheng, X. Zhang, Laminated structural engineering strategy toward carbon nanotube-based aerogel films. ACS Nano 16, 9378–9388 (2022).

    [47] X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4, 1735–1747 (2021).

    [48] Y.-N. Gao, Y. Wang, T.-N. Yue, B. Zhao, R. Che et al., Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chem. Eng. J. 430, 132949 (2022).

    [49] H. Wu, W. Yuan, X. Yuan, L. Cheng, Atmosphere-free activation methodology for holey graphene/cellulose nanofiber-based film electrode with highly efficient capacitance performance. Carbon Energy 5, e229 (2023).

    [50] A. Gevorkian, S.M. Morozova, S. Kheiri, N. Khuu, H. Chen et al., Actuation of three-dimensional-printed nanocolloidal hydrogel with structural anisotropy. Adv. Funct. Mater. 31, 2010743 (2021).

    [51] G. Zhou, M.-C. Li, C. Liu, Q. Wu, C. Mei, 3D printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: ink rheology, 3D printability, and electrochemical performance. Adv. Funct. Mater. 32, 2109593 (2022).

    [52] M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram et al., Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34, e2108855 (2022).

    [53] J. Li, H. Sun, S.-Q. Yi, K.-K. Zou, D. Zhang et al., Flexible polydimethylsiloxane composite with multi-scale conductive network for ultra-strong electromagnetic interference protection. Nano-Micro Lett. 15, 15 (2022).

    [54] G. Cao, S. Cai, H. Zhang, Y. Tian, High-performance conductive adhesives based on water-soluble resins for printed circuits, flexible conductive films, and electromagnetic interference shielding devices. Adv. Compos. Hybrid Mater. 5, 1730–1742 (2022).

    [55] Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14, 8368–8382 (2020).

    [56] Q. Liu, J. Gu, W. Zhang, Y. Miyamoto, Z. Chen et al., Biomorphic porous graphitic carbon for electromagnetic interference shielding. J. Mater. Chem. 22, 21183–21188 (2012).

    [57] L. She, B. Zhao, M. Yuan, J. Chen, B. Fan et al., Joule-heated flexible carbon composite towards the boosted electromagnetic wave shielding properties. Adv. Compos. Hybrid Mater. 5, 3012–3022 (2022).

    [58] M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023).

    [59] W. He, J. Zheng, W. Dong, S. Jiang, G. Lou et al., Efficient electromagnetic wave absorption and Joule heating via ultra-light carbon composite aerogels derived from bimetal-organic frameworks. Chem. Eng. J. 459, 141677 (2023).

    [60] L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1, 413–431 (2021).

    Shaohong Shi, Yuheng Jiang, Hao Ren, Siwen Deng, Jianping Sun, Fangchao Cheng, Jingjing Jing, Yinghong Chen. 3D-Printed Carbon-Based Conformal Electromagnetic Interference Shielding Module for Integrated Electronics[J]. Nano-Micro Letters, 2024, 16(1): 085
    Download Citation