• Photonics Research
  • Vol. 13, Issue 2, 426 (2025)
Zhaoxi Chen1,3,†, Yiwen Zhang1,†, Hanke Feng1, Yuansong Zeng1,2..., Ke Zhang1 and Cheng Wang1,2,*|Show fewer author(s)
Author Affiliations
  • 1Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
  • 2State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong, China
  • 3e-mail: zxchen4@cityu.edu.hk
  • show less
    DOI: 10.1364/PRJ.546194 Cite this Article Set citation alerts
    Zhaoxi Chen, Yiwen Zhang, Hanke Feng, Yuansong Zeng, Ke Zhang, Cheng Wang, "Microwave-resonator-enabled broadband on-chip electro-optic frequency comb generation," Photonics Res. 13, 426 (2025) Copy Citation Text show less
    References

    [1] H. Hu, L. K. Oxenløwe. Chip-based optical frequency combs for high-capacity optical communications. Nanophotonics, 10, 1367-1385(2021).

    [2] J. Pfeifle, V. Brasch, M. Lauermann. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics, 8, 375-380(2014).

    [3] V. Torres-Company, J. Schroder, A. Fulop. Laser frequency combs for coherent optical communications. J. Lightwave Technol., 37, 1663-1670(2019).

    [4] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [5] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [6] S. B. Papp, K. Beha, P. Del’Haye. Microresonator frequency comb optical clock. Optica, 1, 10-14(2014).

    [7] P. Trocha, M. Karpov, D. Ganin. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [8] E. D. Caldwell, L. C. Sinclair, N. R. Newbury. The time-programmable frequency comb and its use in quantum-limited ranging. Nature, 610, 667-673(2022).

    [9] M. G. Suh, X. Yi, Y. H. Lai. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics, 13, 25-30(2019).

    [10] D. Liang, J. E. Bowers. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light Adv. Manuf., 2, 59-83(2021).

    [11] H. Shu, L. Chang, Y. Tao. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).

    [12] A. W. Elshaari, W. Pernice, K. Srinivasan. Hybrid integrated quantum photonic circuits. Nat. Photonics, 14, 285-298(2020).

    [13] Y. Su, Y. He, X. Guo. Scalability of large-scale photonic integrated circuits. ACS Photon., 10, 2020-2030(2023).

    [14] A. Boes, B. Corcoran, L. Chang. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).

    [15] S. Liu, X. Wu, D. Jung. High-channel-count 20  GHz passively mode-locked quantum dot laser directly grown on Si with 41  Tbit/s transmission capacity. Optica, 6, 128-134(2019).

    [16] S. Pan, J. Huang, Z. Zhou. Quantum dot mode-locked frequency comb with ultra-stable 25.5  GHz spacing between 20°C and 120°C. Photon. Res., 8, 1937-1942(2020).

    [17] X. Xue, Y. Xuan, Y. Liu. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594-600(2015).

    [18] M. H. P. Pfeiffer, C. Herkommer, J. Liu. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica, 4, 684-691(2017).

    [19] J. Liu, E. Lucas, A. S. Raja. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [20] H. Weng, J. Liu, A. A. Afridi. Octave-spanning Kerr frequency comb generation with stimulated Raman scattering in an AlN microresonator. Opt. Lett., 46, 540-543(2021).

    [21] L. Chang, W. Xie, H. Shu. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 11, 1331-1338(2020).

    [22] T. Ren, M. Zhang, C. Wang. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photon. Technol. Lett., 31, 889-892(2019).

    [23] M. Xu, M. He, Y. Zhu. Flat optical frequency comb generator based on integrated lithium niobate modulators. J. Lightwave Technol., 40, 339-345(2022).

    [24] M. Zhang, B. Buscaino, C. Wang. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [25] A. Rueda, F. Sedlmeir, M. Kumari. Resonant electro-optic frequency comb. Nature, 568, 378-381(2019).

    [26] R. Niu, S. Wan, W. Li. An integrated wavemeter based on fully-stabilized resonant electro-optic frequency comb. Commun. Phys., 6, 329-335(2023).

    [27] S. Liu, K. Wu, L. Zhou. Microwave pulse generation with a silicon dual-parallel modulator. J. Lightwave Technol., 38, 2134-2143(2020).

    [28] L. Chang, S. Liu, J. E. Bowers. Integrated optical frequency comb technologies. Nat. Photonics, 16, 95-108(2022).

    [29] A. Parriaux, K. Hammani, G. Millot. Electro-optic frequency combs. Adv. Opt. Photon., 12, 223-287(2020).

    [30] Y. Dou, H. Zhang, M. Yao. Generation of flat optical-frequency comb using cascaded intensity and phase modulators. IEEE Photon. Technol. Lett., 24, 727-729(2012).

    [31] R. Wu, V. Supradeepa, C. M. Long. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett., 35, 3234-3236(2010).

    [32] C. Wang, M. Zhang, X. Chen. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [33] D. Zhu, L. Shao, M. Yu. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon., 13, 242-352(2021).

    [34] N. Chen, Y. Yu, K. Lou. High-efficiency thin-film lithium niobate modulator with highly confined optical modes. Opt. Lett., 48, 1602-1605(2023).

    [35] L. Shao, M. Yu, S. Maity. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498-1505(2019).

    [36] Q. Luo, F. Bo, Y. Kong. Advances in lithium niobate thin-film lasers and amplifiers: a review. Adv. Photon., 5, 034002(2023).

    [37] H. Feng, T. Ge, X. Guo. Integrated lithium niobate microwave photonic processing engine. Nature, 627, 80-87(2024).

    [38] R. Cheng, X. Ren, C. Reimer. Single-drive electro-optic frequency comb source on a photonic-wire-bonded thin-film lithium niobate platform. Opt. Lett., 49, 3504-3507(2024).

    [39] K. Zhang, W. Sun, Y. Chen. A power-efficient integrated lithium niobate electro-optic comb generator. Commun. Phys., 6, 17-24(2023).

    [40] A. Boes, L. Chang, C. Langrock. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science, 379, eabj4396(2023).

    [41] Y. Hu, M. Yu, B. Buscaino. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photonics, 16, 679-685(2022).

    [42] I. L. Lufungula, A. Shams-Ansari, D. Renaud. Integrated resonant electro-optic comb enabled by platform-agnostic laser integration. Laser Photon. Rev., 18, 2400205(2024).

    [43] S. Gevorgian, L. P. Linner, E. L. Kollberg. CAD models for shielded multilayered CPW. IEEE Trans. Microwave Theory Tech., 43, 772-779(1995).

    [44] M. Göppl, A. Fragner, M. Baur. Coplanar waveguide resonators for circuit quantum electrodynamics. J. Appl. Phys., 104, 113904(2008).

    [45] M. Kourogi, K. I. Nakagawa, M. Ohtsu. Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quantum Electron., 29, 2693-2701(1993).

    [46] J. Cai, P.-Y. Wang, J. Li. High-Q integrated lithium tantalate microring resonators for on-chip comb generation. Opt. Lett., 49, 5921-5924(2024).

    [47] P. Kharel, C. Reimer, K. Luke. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 8, 357-363(2021).

    Zhaoxi Chen, Yiwen Zhang, Hanke Feng, Yuansong Zeng, Ke Zhang, Cheng Wang, "Microwave-resonator-enabled broadband on-chip electro-optic frequency comb generation," Photonics Res. 13, 426 (2025)
    Download Citation