• Journal of Semiconductors
  • Vol. 43, Issue 9, 092201 (2022)
Chen Gao*, Hui Wang*, Pang Wang*, Jinlong Cai*..., Yuandong Sun*, Cong Yu*, Teng Li*, Xiaoshuai Zhang*, Dan Liu* and Tao Wangaff*|Show fewer author(s)
Author Affiliations
  • School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.1088/1674-4926/43/9/092201 Cite this Article
    Chen Gao, Hui Wang, Pang Wang, Jinlong Cai, Yuandong Sun, Cong Yu, Teng Li, Xiaoshuai Zhang, Dan Liu, Tao Wang. Defect passivation with potassium trifluoroborate for efficient spray-coated perovskite solar cells in air[J]. Journal of Semiconductors, 2022, 43(9): 092201 Copy Citation Text show less
    References

    [1] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [2] NREL, Best Research-Cell Efficiency Chart.https://www.nrel.gov/pv/cell-efficiency.html (last access, January 26, 2022)

    [3] D W Zhao, S J Dai, M Li et al. Improved efficiency and stability of perovskite solar cells using a difluorobenzothiadiazole-based interfacial material. ACS Appl Energy Mater, 4, 10646(2021).

    [4] H K Zhang, Z L Chen, M C Qin et al. Multifunctional crosslinking-enabled strain-regulating crystallization for stable, efficient α-FAPbI3-based perovskite solar cells. Adv Mater, 33, e2008487(2021).

    [5] Y P Mo, C Wang, X T Zheng et al. Nitrogen-doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23%. Interdiscip Mater, 1, 309(2022).

    [6] L X Zhang, X Y Pan, L Liu et al. Star perovskite materials. J Semicond, 43, 030203(2022).

    [7] Y H Cheng, X W Xu, Y M Xie et al. 18% high-efficiency air-processed perovskite solar cells made in a humid atmosphere of 70% RH. Sol RRL, 1, 1770131(2017).

    [8] Y H Cheng, F So, S W Tsang. Progress in air-processed perovskite solar cells: From crystallization to photovoltaic performance. Mater Horiz, 6, 1611(2019).

    [9] J Su, H K Cai, J T Yang et al. Perovskite ink with an ultrawide processing window for efficient and scalable perovskite solar cells in ambient air. ACS Appl Mater Interfaces, 12, 3531(2020).

    [10] S Uličná, B J Dou, D H Kim et al. Scalable deposition of high-efficiency perovskite solar cells by spray-coating. ACS Appl Energy Mater, 1, 1853(2018).

    [11] C T Zuo, D Vak, D C Angmo et al. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 46, 185(2018).

    [12] A Z Guo, L H Chou, S Yang et al. Ultrasonic spray-coatings: Multi-channel pumped ultrasonic spray-coating for high-throughput and scalable mixed halide perovskite solar cells. Adv Mater Interfaces, 8, 2170023(2021).

    [13] J E Bishop, J A Smith, D G Lidzey. Development of spray-coated perovskite solar cells. ACS Appl Mater Interfaces, 12, 48237(2020).

    [14] J Su, H K Cai, X F Ye et al. Efficient perovskite solar cells prepared by hot air blowing to ultrasonic spraying in ambient air. ACS Appl Mater Interfaces, 11, 10689(2019).

    [15] F Hilt, M Q Hovish, N Rolston et al. Rapid route to efficient, scalable, and robust perovskite photovoltaics in air. Energy Environ Sci, 11, 2102(2018).

    [16] J E Bishop, J A Smith, C Greenland et al. High-efficiency spray-coated perovskite solar cells utilizing vacuum-assisted solution processing. ACS Appl Mater Interfaces, 10, 39428(2018).

    [17] H K Cai, X J Liang, X F Ye et al. High efficiency over 20% of perovskite solar cells by spray coating via a simple process. ACS Appl Energy Mater, 3, 9696(2020).

    [18] E J Cassella, E L K Spooner, T Thornber et al. Gas-assisted spray coating of perovskite solar cells incorporating sprayed self-assembled monolayers. Adv Sci, 9, e2104848(2022).

    [19] F Zhang, K Zhu. Additive engineering for efficient and stable perovskite solar cells. Adv Energy Mater, 10, 1902579(2020).

    [20] L Fu, H Li, L Wang et al. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ Sci, 13, 4017(2020).

    [21] F Gao, Y Zhao, X W Zhang et al. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv Energy Mater, 10, 1902650(2020).

    [22] B Chen, P N Rudd, S Yang et al. Imperfections and their passivation in halide perovskite solar cells. Chem Soc Rev, 48, 3842(2019).

    [23] M M Byranvand, M Saliba. Defect passivation of perovskite films for highly efficient and stable solar cells. Sol RRL, 5, 2100295(2021).

    [24] F Wu, R Pathak, Q Q Qiao. Origin and alleviation of J-V hysteresis in perovskite solar cells: A short review. Catal Today, 374, 86(2021).

    [25] P Y Liu, W Wang, S M Liu et al. Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv Energy Mater, 9, 1803017(2019).

    [26] X X Ren, L X Zhang, Y B Yuan et al. Ion migration in perovskite solar cells. J Semicond, 42, 010201(2021).

    [27] S B Xiong, Z Y Hou, S J Zou et al. Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule, 5, 467(2021).

    [28] Y C Zhao, J Wei, H Li et al. A polymer scaffold for self-healing perovskite solar cells. Nat Commun, 7, 10228(2016).

    [29] X D Li, S Z Ke, X X Feng et al. Enhancing the stability of perovskite solar cells through cross-linkable and hydrogen bonding multifunctional additives. J Mater Chem A, 9, 12684(2021).

    [30] N X Li, S X Tao, Y H Chen et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat Energy, 4, 408(2019).

    [31] M Abdi-Jalebi, Z Andaji-Garmaroudi, A J Pearson et al. Potassium- and rubidium-passivated alloyed perovskite films: Optoelectronic properties and moisture stability. ACS Energy Lett, 3, 2671(2018).

    [32] M Abdi-Jalebi, Z Andaji-Garmaroudi, S Cacovich et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 555, 497(2018).

    [33] F Zheng, W J Chen, T L Bu et al. Triggering the passivation effect of potassium doping in mixed-cation mixed-halide perovskite by light illumination. Adv Energy Mater, 9, 1901016(2019).

    [34] M Zhang, J M Bing, Y Cho et al. Synergistic effect of potassium and iodine from potassium triiodide complex additive on gas-quenched perovskite solar cells. Nano Energy, 63, 103853(2019).

    [35] T L Bu, J Li, H Y Li et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 372, 1327(2021).

    [36] Y H Deng, X P Zheng, Y Bai et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat Energy, 3, 560(2018).

    [37] C Gao, P Wang, H Wang et al. Binary additive engineering enables efficient perovskite solar cells via spray-coating in air. ACS Appl Energy Mater, 4, 11496(2021).

    [38] D Koo, Y Cho, U Kim et al. High-performance inverted perovskite solar cells with operational stability via n-type small molecule additive-assisted defect passivation. Adv Energy Mater, 10, 2001920(2020).

    [39] M Zhao, J Yan, G Yu et al. Grain boundary defects passivated with tert-butyl methacrylate for high-efficiency perovskite solar cells. ACS Appl Energy Mater, 4, 11298(2021).

    [40] H H Wang, Z W Wang, Z Yang et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv Mater, 32, 2000865(2020).

    [41] A L Wang, J W Wang, X B Niu et al. Inhibiting octahedral tilting for stable CsPbI2Br solar cells. InfoMat, 4, e12263(2022).

    [42] M N Hou, Y Z Xu, B Zhou et al. Aryl diammonium iodide passivation for efficient and stable hybrid organ-inorganic perovskite solar cells. Adv Funct Mater, 30, 2002366(2020).

    [43] X Y Wu, Y Jiang, C Chen et al. Stable triple cation perovskite precursor for highly efficient perovskite solar cells enabled by interaction with 18C6 stabilizer. Adv Funct Mater, 30, 1908613(2020).

    [44] X X Gao, W Luo, Y Zhang et al. Stable and high-efficiency methylammonium-free perovskite solar cells. Adv Mater, 32, e1905502(2020).

    [45] Y Rao, Z P Li, D C Liu et al. Dual-functional additive to simultaneously modify the interface and grain boundary for highly efficient and hysteresis-free perovskite solar cells. ACS Appl Mater Interfaces, 13, 20043(2021).

    [46] Y L Chen, X J Zuo, Y Y He et al. Dual passivation of perovskite and SnO2 for high-efficiency MAPbI3 perovskite solar cells. Adv Sci, 8, 2001466(2021).

    [47] Y M Sha, E B Bi, Y Zhang et al. A scalable integrated dopant-free heterostructure to stabilize perovskite solar cell modules. Adv Energy Mater, 11, 2003301(2021).

    [48] Y Wang, G Y Chen, D Ouyang et al. High phase stability in CsPbI3 enabled by Pb-I octahedra anchors for efficient inorganic perovskite photovoltaics. Adv Mater, 32, 2000186(2020).

    [49] X Li, W Sheng, X Duan et al. Defect passivation effect of chemical groups on perovskite solar cells. ACS Appl Mater Interfaces(2021).

    [50] X X Liu, Y H Cheng, B S Tang et al. Shallow defects levels and extract detrapped charges to stabilize highly efficient and hysteresis-free perovskite photovoltaic devices. Nano Energy, 71, 104556(2020).

    [51] J F Yuan, C H Bi, S X Wang et al. Spray coating technologies: Spray-coated colloidal perovskite quantum dot films for highly efficient solar cells. Adv Funct Mater, 29, 1970337(2019).

    [52] Q F Dong, Y J Fang, Y C Shao et al. Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 347, 967(2015).

    [53] F H Ye, J J Ma, C Chen et al. Roles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv Mater, 33, e2007126(2021).

    [54] S J Wang, B W Yang, J Han et al. Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy Environ Sci, 13, 5068(2020).

    Chen Gao, Hui Wang, Pang Wang, Jinlong Cai, Yuandong Sun, Cong Yu, Teng Li, Xiaoshuai Zhang, Dan Liu, Tao Wang. Defect passivation with potassium trifluoroborate for efficient spray-coated perovskite solar cells in air[J]. Journal of Semiconductors, 2022, 43(9): 092201
    Download Citation